BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11087829)

  • 1. A prokaryote and human tRNA synthetase provide an essential RNA splicing function in yeast mitochondria.
    Houman F; Rho SB; Zhang J; Shen X; Wang CC; Schimmel P; Martinis SA
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13743-8. PubMed ID: 11087829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
    Hsu JL; Martinis SA
    J Mol Biol; 2008 Feb; 376(2):482-91. PubMed ID: 18155724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and functional dissection of a putative RNA-binding region in yeast mitochondrial leucyl-tRNA synthetase.
    Nawaz MH; Pang YL; Martinis SA
    J Mol Biol; 2007 Mar; 367(2):384-94. PubMed ID: 17270210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles.
    Hsu JL; Rho SB; Vannella KM; Martinis SA
    J Biol Chem; 2006 Aug; 281(32):23075-82. PubMed ID: 16774921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inserted region of leucyl-tRNA synthetase plays a critical role in group I intron splicing.
    Rho SB; Lincecum TL; Martinis SA
    EMBO J; 2002 Dec; 21(24):6874-81. PubMed ID: 12486008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria.
    Karkhanis VA; Boniecki MT; Poruri K; Martinis SA
    J Biol Chem; 2006 Nov; 281(44):33217-25. PubMed ID: 16956879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergence of the mitochondrial leucyl tRNA synthetase genes in two closely related yeasts Saccharomyces cerevisiae and Saccharomyces douglasii: a paradigm of incipient evolution.
    Herbert CJ; Dujardin G; Labouesse M; Slonimski PP
    Mol Gen Genet; 1988 Aug; 213(2-3):297-309. PubMed ID: 3054483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity.
    Huang Q; Zhou XL; Hu QH; Lei HY; Fang ZP; Yao P; Wang ED
    RNA; 2014 Sep; 20(9):1440-50. PubMed ID: 25051973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing.
    Herbert CJ; Labouesse M; Dujardin G; Slonimski PP
    EMBO J; 1988 Feb; 7(2):473-83. PubMed ID: 3284745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cell division cycle gene CDC60 encodes cytosolic leucyl-tRNA synthetase in Saccharomyces cerevisiae.
    Hohmann S; Thevelein JM
    Gene; 1992 Oct; 120(1):43-9. PubMed ID: 1398122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro mutagenesis of the mitochondrial leucyl-tRNA synthetase of S. cerevisiae reveals residues critical for its in vivo activities.
    Li GY; Herbert CJ; Labouesse M; Slonimski PP
    Curr Genet; 1992 Jul; 22(1):69-74. PubMed ID: 1611670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast mitochondrial leucyl-tRNA synthetase CP1 domain has functionally diverged to accommodate RNA splicing at expense of hydrolytic editing.
    Sarkar J; Poruri K; Boniecki MT; McTavish KK; Martinis SA
    J Biol Chem; 2012 Apr; 287(18):14772-81. PubMed ID: 22383526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
    Ye Q; Wang M; Fang ZP; Ruan ZR; Ji QQ; Zhou XL; Wang ED
    J Biol Chem; 2015 Oct; 290(40):24391-402. PubMed ID: 26272616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The yeast mitochondrial leucyl-tRNA synthetase is a splicing factor for the excision of several group I introns.
    Labouesse M
    Mol Gen Genet; 1990 Nov; 224(2):209-21. PubMed ID: 2277640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro mutagenesis of the mitochondrial leucyl tRNA synthetase of Saccharomyces cerevisiae shows that the suppressor activity of the mutant proteins is related to the splicing function of the wild-type protein.
    Li GY; Bécam AM; Slonimski PP; Herbert CJ
    Mol Gen Genet; 1996 Oct; 252(6):667-75. PubMed ID: 8917309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing.
    Hu QH; Huang Q; Wang ED
    Nucleic Acids Res; 2013 Feb; 41(3):1859-72. PubMed ID: 23268443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation.
    Lue SW; Kelley SO
    Biochemistry; 2007 Apr; 46(15):4466-72. PubMed ID: 17378584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique residues crucial for optimal editing in yeast cytoplasmic Leucyl-tRNA synthetase are revealed by using a novel knockout yeast strain.
    Yao P; Zhou XL; He R; Xue MQ; Zheng YG; Wang YF; Wang ED
    J Biol Chem; 2008 Aug; 283(33):22591-600. PubMed ID: 18550527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Candida albicans gene encoding the cytoplasmic leucyl-tRNA synthetase: implications for the evolution of CUG codon reassignment.
    O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF
    Gene; 2001 Sep; 275(1):133-40. PubMed ID: 11574161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucyl-tRNA synthetase-dependent and -independent activation of a group I intron.
    Boniecki MT; Rho SB; Tukalo M; Hsu JL; Romero EP; Martinis SA
    J Biol Chem; 2009 Sep; 284(39):26243-50. PubMed ID: 19622748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.