These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 11088107)
1. Pulsating wave propagation in reactive flows: flow-distributed oscillations. Kaern M; Menzinger M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3334-8. PubMed ID: 11088107 [TBL] [Abstract][Full Text] [Related]
2. Flow-distributed oscillations: stationary chemical waves in a reacting flow. Kaern M; Menzinger M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):R3471-4. PubMed ID: 11970260 [TBL] [Abstract][Full Text] [Related]
3. Non-turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates. Satnoianu RA; Menzinger M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):113-9. PubMed ID: 11088442 [TBL] [Abstract][Full Text] [Related]
4. Comment on "Flow-distributed oscillations: stationary chemical waves in a reacting flow". Andresen P; Mosekilde E; Dewel G; Borckmans P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2992-3. PubMed ID: 11088791 [TBL] [Abstract][Full Text] [Related]
5. Pattern formation in a reaction-diffusion-advection system with wave instability. Berenstein I Chaos; 2012 Jun; 22(2):023112. PubMed ID: 22757519 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance imaging of flow-distributed oscillations. Britton MM; Sederman AJ; Taylor AF; Scott SK; Gladden LF J Phys Chem A; 2005 Sep; 109(37):8306-13. PubMed ID: 16834220 [TBL] [Abstract][Full Text] [Related]
7. Advection of chemical reaction fronts in a porous medium. Koptyug IV; Zhivonitko VV; Sagdeev RZ J Phys Chem B; 2008 Jan; 112(4):1170-6. PubMed ID: 18173259 [TBL] [Abstract][Full Text] [Related]
8. Thermokinetic origin of luminescent traveling fronts in the H2O2-NaOH-SCN(-)-Cu2+ homogeneous oscillator: experiments and model. Wiśniewski A; Gorzkowski MT; Pekala K; Orlik M J Phys Chem A; 2013 Nov; 117(44):11155-66. PubMed ID: 24111827 [TBL] [Abstract][Full Text] [Related]
9. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499 [TBL] [Abstract][Full Text] [Related]
10. Transition from traveling to standing waves in the 4:1 resonant Belousov-Zhabotinsky reaction. Marts B; Lin AL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026211. PubMed ID: 18352107 [TBL] [Abstract][Full Text] [Related]
11. Instability of the Homogeneous Distribution of Chemical Waves in the Belousov-Zhabotinsky Reaction. Suematsu NJ; Nakata S Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683766 [TBL] [Abstract][Full Text] [Related]
12. Period doubling in a periodically forced Belousov-Zhabotinsky reaction. Marts B; Simpson DJ; Hagberg A; Lin AL Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026213. PubMed ID: 17930127 [TBL] [Abstract][Full Text] [Related]
13. Structure and particle transport in second-order stokes flow. Keanini RG Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6606-20. PubMed ID: 11088341 [TBL] [Abstract][Full Text] [Related]
14. Coexistence of stationary and traveling waves in reaction-diffusion-advection systems. Satnoianu RA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):032101. PubMed ID: 14524811 [TBL] [Abstract][Full Text] [Related]
15. Chemical-wave dynamics in a vertically oscillating fluid layer. Fernández-García G; Roncaglia DI; Pérez-Villar V; Muñuzuri AP; Pérez-Muñuzuri V Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026204. PubMed ID: 18352100 [TBL] [Abstract][Full Text] [Related]
16. Towards nonlinear selection of reaction-diffusion patterns in presence of advection: a spatial dynamics approach. Yochelis A; Sheintuch M Phys Chem Chem Phys; 2009 Oct; 11(40):9210-23. PubMed ID: 19812842 [TBL] [Abstract][Full Text] [Related]
17. Barriers to front propagation in ordered and disordered vortex flows. Bargteil D; Solomon T Chaos; 2012 Sep; 22(3):037103. PubMed ID: 23020494 [TBL] [Abstract][Full Text] [Related]
18. General theory of nonlinear flow-distributed oscillations. McGraw PN; Menzinger M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066122. PubMed ID: 14754284 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear waves in a quintic FitzHugh-Nagumo model with cross diffusion: Fronts, pulses, and wave trains. Zemskov EP; Tsyganov MA; Kassner K; Horsthemke W Chaos; 2021 Mar; 31(3):033141. PubMed ID: 33810726 [TBL] [Abstract][Full Text] [Related]
20. Chemical Wave Propagation in the Belousov-Zhabotinsky Reaction Controlled by Electrical Potential. Kuze M; Horisaka M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S J Phys Chem A; 2019 Jun; 123(23):4853-4857. PubMed ID: 31094190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]