These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 11088201)
1. Structural stability of simple classical fluids: universal properties of the lyapunov-exponent measure. Malescio G; Giaquinta PV; Rosenfeld Y Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4090-4. PubMed ID: 11088201 [TBL] [Abstract][Full Text] [Related]
2. Stability of the iterative solutions of integral equations as one phase freezing criterion. Fantoni R; Pastore G Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046104. PubMed ID: 14682999 [TBL] [Abstract][Full Text] [Related]
3. Microscopic structure and thermodynamics of a core-softened model fluid: insights from grand canonical Monte Carlo simulations and integral equations theory. Pizio O; Dominguez H; Duda Y; Sokołowski S J Chem Phys; 2009 May; 130(17):174504. PubMed ID: 19425787 [TBL] [Abstract][Full Text] [Related]
4. Predicting the structure of fluids with piecewise constant interactions: Comparing the accuracy of five efficient integral equation theories. Hollingshead KB; Truskett TM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043307. PubMed ID: 25974612 [TBL] [Abstract][Full Text] [Related]
5. Integral equation theory for fluids ordered by an external field: separable interactions. Perera A Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2912-29. PubMed ID: 11970096 [TBL] [Abstract][Full Text] [Related]
6. Statistical Lyapunov Theory Based on Bifurcation Analysis of Energy Cascade in Isotropic Homogeneous Turbulence: A Physical-Mathematical Review. de Divitiis N Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267233 [TBL] [Abstract][Full Text] [Related]
7. Structural stability of simple fluids and accuracy of integral-equation theories. Malescio G; Giaquinta PV Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4439-41. PubMed ID: 11088983 [TBL] [Abstract][Full Text] [Related]
8. Quasi-integrable systems are slow to thermalize but may be good scramblers. Goldfriend T; Kurchan J Phys Rev E; 2020 Aug; 102(2-1):022201. PubMed ID: 32942492 [TBL] [Abstract][Full Text] [Related]
9. Closure-based perturbative density-functional theory of hard-sphere freezing: properties of the bridge functional. Verma A; Ford DM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031109. PubMed ID: 19905064 [TBL] [Abstract][Full Text] [Related]
10. Lyapunov instabilities of Lennard-Jones fluids. Yang HL; Radons G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036211. PubMed ID: 15903550 [TBL] [Abstract][Full Text] [Related]
11. Statistics of finite-time Lyapunov exponents in a random time-dependent potential. Schomerus H; Titov M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066207. PubMed ID: 12513384 [TBL] [Abstract][Full Text] [Related]
12. Hypernetted-chain investigation of the random first-order transition of a Lennard-Jones liquid to an ideal glass. Bomont JM; Hansen JP; Pastore G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042316. PubMed ID: 26565249 [TBL] [Abstract][Full Text] [Related]
13. Closure for the Ornstein-Zernike equation with pressure and free energy consistency. Tsednee T; Luchko T Phys Rev E; 2019 Mar; 99(3-1):032130. PubMed ID: 30999429 [TBL] [Abstract][Full Text] [Related]
14. Shot noise in chaotic systems: "classical" to quantum crossover. Agam O; Aleiner I; Larkin A Phys Rev Lett; 2000 Oct; 85(15):3153-6. PubMed ID: 11019289 [TBL] [Abstract][Full Text] [Related]
15. Energy landscapes of quantum Lennard-Jones solids. Chakravarty C J Phys Chem A; 2011 Jun; 115(25):7028-33. PubMed ID: 21456608 [TBL] [Abstract][Full Text] [Related]
16. Separation of trajectories and its relation to entropy for intermittent systems with a zero Lyapunov exponent. Korabel N; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016209. PubMed ID: 20866709 [TBL] [Abstract][Full Text] [Related]
17. Constructing a new closure theory based on the third-order Ornstein-Zernike equation and a study of the adsorption of simple fluids. Lee LL J Chem Phys; 2011 Nov; 135(20):204706. PubMed ID: 22128951 [TBL] [Abstract][Full Text] [Related]
18. The force distribution probability function for simple fluids by density functional theory. Rickayzen G; Heyes DM J Chem Phys; 2013 Feb; 138(8):084509. PubMed ID: 23464162 [TBL] [Abstract][Full Text] [Related]
19. Loschmidt echo and Lyapunov exponent in a quantum disordered system. Adamov Y; Gornyi IV; Mirlin AD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056217. PubMed ID: 12786260 [TBL] [Abstract][Full Text] [Related]
20. Analytic lyapunov exponents in a classical nonlinear field equation. Franzosi R; Gatto R; Pettini G; Pettini M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):R3299-302. PubMed ID: 11088184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]