These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11088251)

  • 1. Multiple scattering efficiency and optical extinction.
    Swanson NL; Billard DB
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4518-22. PubMed ID: 11088251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and detection of individual submicron particles by capillary electrophoresis with laser-light-scattering detection.
    Rezenom YH; Wellman AD; Tilstra L; Medley CD; Gilman SD
    Analyst; 2007 Dec; 132(12):1215-22. PubMed ID: 18318282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size and Refractive Index Determination of Single Polystyrene Spheres.
    Marx E; Mulholland GW
    J Res Natl Bur Stand (1977); 1983; 88(5):321-338. PubMed ID: 34566108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extinction, absorption, and scattering of light by plasmonic spheres embedded in an absorbing host medium.
    Khlebtsov NG
    Phys Chem Chem Phys; 2021 Oct; 23(40):23141-23157. PubMed ID: 34617525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy.
    Mellon D; King SJ; Kim J; Reid JP; Orr-Ewing AJ
    J Phys Chem A; 2011 Feb; 115(5):774-83. PubMed ID: 21204532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Scattering Sizing of Single Submicron Particles by High-Sensitivity Flow Cytometry.
    Zhang W; Tian Y; Hu X; He S; Niu Q; Chen C; Zhu S; Yan X
    Anal Chem; 2018 Nov; 90(21):12768-12775. PubMed ID: 30277744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle sizing with a simple differential light-scattering photometer: homogeneous spherical particles.
    Grasso V; Neri F; Fucile E
    Appl Opt; 1997 Apr; 36(12):2452-8. PubMed ID: 18253226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mie scattering revisited: Study of bichromatic Mie scattering of electromagnetic waves by a distribution of spherical particles.
    Olivares IE; Carrazana P
    Rev Sci Instrum; 2020 Aug; 91(8):083112. PubMed ID: 32872902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a One-Micrometer-Diameter Particle Size Standard Reference Material.
    Mulholland GW; Hartman AW; Hembree GG; Marx E; Lettieri TR
    J Res Natl Bur Stand (1977); 1985; 90(1):3-26. PubMed ID: 34566140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction.
    Butler TJ; Miller JL; Orr-Ewing AJ
    J Chem Phys; 2007 May; 126(17):174302. PubMed ID: 17492858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles.
    Donovan DP; Quante M; Schlimme I; Macke A
    Appl Opt; 2004 Sep; 43(25):4929-40. PubMed ID: 15449480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser anemometer signals: visibility characteristics and application to particle sizing.
    Adrian RJ; Orloff KL
    Appl Opt; 1977 Mar; 16(3):677-84. PubMed ID: 20168561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering from Spheres: A New Look into an Old Problem.
    Ruello G; Lattanzi R
    Electronics (Basel); 2021 Jan; 10(2):. PubMed ID: 34084560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the size and refractive index of homogeneous spherical aerosol particles using Mie resonance spectroscopy.
    Lew LJN; Ting MV; Preston TC
    Appl Opt; 2018 Jun; 57(16):4601-4609. PubMed ID: 29877369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size distribution of mineral aerosol: using light-scattering models in laser particle sizing.
    Veihelmann B; Konert M; van der Zande WJ
    Appl Opt; 2006 Aug; 45(23):6022-9. PubMed ID: 16926891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mie theory for light scattering by a spherical particle in an absorbing medium.
    Fu Q; Sun W
    Appl Opt; 2001 Mar; 40(9):1354-61. PubMed ID: 18357121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering of 0.627-microm light from spheroidal 2-microm cladosporium and cubical 4-microm NaCI particles.
    Kirmaci I; Ward G
    Appl Opt; 1979 Oct; 18(19):3328-31. PubMed ID: 20216601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable transport mean free path of light in xerogel matrixes embedded with polystyrene spheres.
    Bret BP; Couto NJ; Amaro M; Nunes-Pereira EJ; Belsley M
    Opt Express; 2009 Apr; 17(9):6975-81. PubMed ID: 19399071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random anti-lasing through coherent perfect absorption in a disordered medium.
    Pichler K; Kühmayer M; Böhm J; Brandstötter A; Ambichl P; Kuhl U; Rotter S
    Nature; 2019 Mar; 567(7748):351-355. PubMed ID: 30833737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.