These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 11088335)
21. Lattice Boltzmann model for wave propagation. Zhang J; Yan G; Shi X Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026706. PubMed ID: 19792280 [TBL] [Abstract][Full Text] [Related]
22. Interface-capturing lattice Boltzmann equation model for two-phase flows. Lou Q; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013302. PubMed ID: 25679734 [TBL] [Abstract][Full Text] [Related]
23. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Guo Z; Zheng C; Shi B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036707. PubMed ID: 18517557 [TBL] [Abstract][Full Text] [Related]
24. Fluctuating multicomponent lattice Boltzmann model. Belardinelli D; Sbragaglia M; Biferale L; Gross M; Varnik F Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023313. PubMed ID: 25768641 [TBL] [Abstract][Full Text] [Related]
26. From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. Philippi PC; Hegele LA; Dos Santos LO; Surmas R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056702. PubMed ID: 16803069 [TBL] [Abstract][Full Text] [Related]
27. Generalized transport coefficients for inelastic Maxwell mixtures under shear flow. Garzó V; Trizac E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052202. PubMed ID: 26651684 [TBL] [Abstract][Full Text] [Related]
28. Shear-rate-dependent transport coefficients in granular suspensions. Garzó V Phys Rev E; 2017 Jun; 95(6-1):062906. PubMed ID: 28709245 [TBL] [Abstract][Full Text] [Related]
29. Discrete-velocity Boltzmann model: Regularization and linear stability. Ilyin O Phys Rev E; 2022 Apr; 105(4-2):045312. PubMed ID: 35590549 [TBL] [Abstract][Full Text] [Related]
30. Multiple-relaxation-time model for the correct thermohydrodynamic equations. Zheng L; Shi B; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026705. PubMed ID: 18850971 [TBL] [Abstract][Full Text] [Related]
31. Lattice Boltzmann method for Lennard-Jones fluids based on the gradient theory of interfaces. Kikkinides ES; Kainourgiakis ME; Yiotis AG; Stubos AK Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056705. PubMed ID: 21230617 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation. Lou Q; Guo Z; Shi B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063301. PubMed ID: 23848800 [TBL] [Abstract][Full Text] [Related]
33. Lattice-Boltzmann model based on field mediators for immiscible fluids. Santos LO; Facin PC; Philippi PC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056302. PubMed ID: 14682879 [TBL] [Abstract][Full Text] [Related]
34. Turbulence simulation by adaptive multi-relaxation lattice boltzmann modeling. Liu X; Pang WM; Qin J; Fu CW IEEE Trans Vis Comput Graph; 2014 Feb; 20(2):289-302. PubMed ID: 24356370 [TBL] [Abstract][Full Text] [Related]
35. Lattice Boltzmann equation method for the Cahn-Hilliard equation. Zheng L; Zheng S; Zhai Q Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013309. PubMed ID: 25679741 [TBL] [Abstract][Full Text] [Related]
36. Finite-difference-based multiple-relaxation-times lattice Boltzmann model for binary mixtures. Zheng L; Guo Z; Shi B; Zheng C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016706. PubMed ID: 20365501 [TBL] [Abstract][Full Text] [Related]
37. Linear discrete velocity model-based lattice Boltzmann flux solver for simulating acoustic propagation in fluids. Zhan N; Chen R; Song Q; You Y Phys Rev E; 2022 Jun; 105(6-2):065303. PubMed ID: 35854519 [TBL] [Abstract][Full Text] [Related]
38. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Wang P; Wang LP; Guo Z Phys Rev E; 2016 Oct; 94(4-1):043304. PubMed ID: 27841571 [TBL] [Abstract][Full Text] [Related]
39. Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows. Guo Z; Shi B; Zheng C Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2283-91. PubMed ID: 21536575 [TBL] [Abstract][Full Text] [Related]
40. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments. Premnath KN; Banerjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]