These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11088339)

  • 1. Effect of particle inertia on the viscous-convective subrange.
    Jeffery CA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6578-85. PubMed ID: 11088339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy Particle Clustering in Inertial Subrange of High-Reynolds Number Turbulence.
    Matsuda K; Yoshimatsu K; Schneider K
    Phys Rev Lett; 2024 Jun; 132(23):234001. PubMed ID: 38905672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of large-scale vorticity generation in shear-flow turbulence.
    Käpylä PJ; Mitra D; Brandenburg A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016302. PubMed ID: 19257134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of solid particles with a tangle of vortex filaments in a viscous fluid.
    Kivotides D; Barenghi CF; Mee AJ; Sergeev YA
    Phys Rev Lett; 2007 Aug; 99(7):074501. PubMed ID: 17930898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence.
    Shi Y; Ellero M; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036708. PubMed ID: 22587210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy particle concentration in turbulence at dissipative and inertial scales.
    Bec J; Biferale L; Cencini M; Lanotte A; Musacchio S; Toschi F
    Phys Rev Lett; 2007 Feb; 98(8):084502. PubMed ID: 17359102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive scalar convective-diffusive subrange for low Prandtl numbers in isotropic turbulence.
    Briard A; Gomez T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):011001. PubMed ID: 25679561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle inertia on turbulence in a suspension.
    L'vov VS; Ooms G; Pomyalov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046314. PubMed ID: 12786494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressible turbulent mixing: Effects of Schmidt number.
    Ni Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053020. PubMed ID: 26066261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liutex-Represented Vortex Spectrum in Turbulence.
    Yan B; Wang Y; Liu C
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence.
    Hartlep T; Cuzzi JN; Weston B
    Phys Rev E; 2017 Mar; 95(3-1):033115. PubMed ID: 28415324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tangling clustering of inertial particles in stably stratified turbulence.
    Eidelman A; Elperin T; Kleeorin N; Melnik B; Rogachevskii I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056313. PubMed ID: 20866328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How long do particles spend in vortical regions in turbulent flows?
    Bhatnagar A; Gupta A; Mitra D; Pandit R; Perlekar P
    Phys Rev E; 2016 Nov; 94(5-1):053119. PubMed ID: 27967067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence.
    Scatamacchia R; Biferale L; Toschi F
    Phys Rev Lett; 2012 Oct; 109(14):144501. PubMed ID: 23083247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles.
    Bhatnagar A; Gustavsson K; Mitra D
    Phys Rev E; 2018 Feb; 97(2-1):023105. PubMed ID: 29548076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulent transport of material particles: an experimental study of finite size effects.
    Qureshi NM; Bourgoin M; Baudet C; Cartellier A; Gagne Y
    Phys Rev Lett; 2007 Nov; 99(18):184502. PubMed ID: 17995412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force.
    van Hinsberg MA; Clercx HJ; Toschi F
    Phys Rev E; 2017 Feb; 95(2-1):023106. PubMed ID: 28297963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows.
    Shen J; Lu Z; Wang LP; Peng C
    Phys Rev E; 2021 Aug; 104(2-2):025109. PubMed ID: 34525650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct numerical simulation and Reynolds-averaged Navier-Stokes modeling of the sudden viscous dissipation for multicomponent turbulence.
    Campos A; Morgan BE
    Phys Rev E; 2019 Jun; 99(6-1):063103. PubMed ID: 31330657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.