These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11088347)

  • 1. Capillary-wave effects at critical wetting in type-I superconductors.
    Dobbs HT; Blossey R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):R6049-51. PubMed ID: 11088347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface.
    MacDowell LG
    Phys Rev E; 2017 Aug; 96(2-1):022801. PubMed ID: 28950477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renormalization group calculations for wetting transitions of infinite order and continuously varying order: local interface Hamiltonian approach.
    Indekeu JO; Koga K; Hooyberghs H; Parry AO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022122. PubMed ID: 24032790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D short-range wetting and nonlocality.
    Parry AO; Rascón C; Bernardino NR; Romero-Enrique JM
    Phys Rev Lett; 2008 Apr; 100(13):136105. PubMed ID: 18517973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casimir Contribution to the Interfacial Hamiltonian for 3D Wetting.
    Squarcini A; Romero-Enrique JM; Parry AO
    Phys Rev Lett; 2022 May; 128(19):195701. PubMed ID: 35622040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonperturbative microscopic theory of superconducting fluctuations near a quantum critical point.
    Galitski V
    Phys Rev Lett; 2008 Mar; 100(12):127001. PubMed ID: 18517902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuation-driven first-order transition in Pauli-limited d-wave superconductors.
    Dalidovich D; Yang K
    Phys Rev Lett; 2004 Dec; 93(24):247002. PubMed ID: 15697849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled multiple-mode theory for s
    Kiselev MN; Efremov DV; Drechsler SL; van den Brink J; Kikoin K
    Sci Rep; 2016 Nov; 6():37508. PubMed ID: 27897177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual Sequence of the Critical Magnetic Fields
    Ovchinnikov YN; Efremov DV
    J Supercond Nov Magn; 2024; 37(2):325-338. PubMed ID: 38343881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations.
    Palonen H; Jäykkä J; Paturi P
    J Phys Condens Matter; 2013 Sep; 25(38):385702. PubMed ID: 23995237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shift of the critical temperature in superconductors: a self-consistent approach.
    Cappellaro A; Salasnich L
    Sci Rep; 2020 Jun; 10(1):9088. PubMed ID: 32493913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuation-induced constraints on the observation of unbinding in a confined complex fluid.
    Clarysse F; Boulter CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011604. PubMed ID: 11461267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First observation for a cuprate superconductor of fluctuation-induced diamagnetism well inside the finite-magnetic-field regime.
    Carballeira C; Mosqueira J; Revcolevschi A; Vidal F
    Phys Rev Lett; 2000 Apr; 84(14):3157-60. PubMed ID: 11019036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure in the Landau-Ginzburg functional: Pascal's law, nucleation in fluid mixtures, a meanfield theory of amphiphilic action, and interface wetting in glassy liquids.
    Chan HY; Lubchenko V
    J Chem Phys; 2015 Sep; 143(12):124502. PubMed ID: 26429019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filling and wetting transitions on sinusoidal substrates: a mean-field study of the Landau-Ginzburg model.
    Rodríguez-Rivas Á; Galván J; Romero-Enrique JM
    J Phys Condens Matter; 2015 Jan; 27(3):035101. PubMed ID: 25437528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ginzburg-Landau surface energy of multiband superconductors: derivation and application to selected systems.
    Bekaert J; Bringmans L; Milošević MV
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37137310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large D-2 theory of superconducting fluctuations in a magnetic field and its application to iron pnictides.
    Murray JM; Tesanović Z
    Phys Rev Lett; 2010 Jul; 105(3):037006. PubMed ID: 20867796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-conventional superconducting fluctuations in Ba(Fe1-xRhx)2As2 iron-based superconductors.
    Bossoni L; Romanó L; Canfield PC; Lascialfari A
    J Phys Condens Matter; 2014 Oct; 26(40):405703. PubMed ID: 25229750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended Ginzburg-Landau formalism for two-band superconductors.
    Shanenko AA; Milošević MV; Peeters FM; Vagov AV
    Phys Rev Lett; 2011 Jan; 106(4):047005. PubMed ID: 21405351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of a non-local interfacial Hamiltonian for short-ranged wetting: II. General diagrammatic structure.
    Parry AO; Rascón C; Bernardino NR; Romero-Enrique JM
    J Phys Condens Matter; 2007 Oct; 19(41):416105. PubMed ID: 28192337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.