These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11088374)

  • 1. Probability distribution of the free energy of a directed polymer in a random medium.
    Brunet E; Derrida B
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6789-801. PubMed ID: 11088374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA unzipping and the unbinding of directed polymers in a random media.
    Kafri Y; Polkovnikov A
    Phys Rev Lett; 2006 Nov; 97(20):208104. PubMed ID: 17155722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutually avoiding paths in random media and largest eigenvalues of random matrices.
    De Luca A; Le Doussal P
    Phys Rev E; 2017 Mar; 95(3-1):030103. PubMed ID: 28415280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero-temperature directed polymer in random potential in 4+1 dimensions.
    Kim JM
    Phys Rev E; 2016 Dec; 94(6-1):062149. PubMed ID: 28085341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact Short-Time Height Distribution in the One-Dimensional Kardar-Parisi-Zhang Equation and Edge Fermions at High Temperature.
    Le Doussal P; Majumdar SN; Rosso A; Schehr G
    Phys Rev Lett; 2016 Aug; 117(7):070403. PubMed ID: 27563940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing transition of the directed polymer in a 1 + d random medium: location of the critical temperature and unusual critical properties.
    Monthus C; Garel T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011101. PubMed ID: 16907055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions.
    Calabrese P; Le Doussal P
    Phys Rev Lett; 2011 Jun; 106(25):250603. PubMed ID: 21770622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretching of a Fractal Polymer around a Disc Reveals Kardar-Parisi-Zhang Scaling.
    Polovnikov KE; Nechaev SK; Grosberg AY
    Phys Rev Lett; 2022 Aug; 129(9):097801. PubMed ID: 36083665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kardar-Parisi-Zhang modes in d-dimensional directed polymers.
    Schütz GM; Wehefritz-Kaufmann B
    Phys Rev E; 2017 Sep; 96(3-1):032119. PubMed ID: 29346934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer.
    Santalla SN; Rodríguez-Laguna J; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010401. PubMed ID: 24580156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling.
    Chame A; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051104. PubMed ID: 12513464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate disorder regime for directed polymers in dimension 1+1.
    Alberts T; Khanin K; Quastel J
    Phys Rev Lett; 2010 Aug; 105(9):090603. PubMed ID: 20868148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing large deviations of the Kardar-Parisi-Zhang equation at short times with an importance sampling of directed polymers in random media.
    Hartmann AK; Krajenbrink A; Le Doussal P
    Phys Rev E; 2020 Jan; 101(1-1):012134. PubMed ID: 32069556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-temperature free fermions and the Kardar-Parisi-Zhang equation at finite time.
    Dean DS; Le Doussal P; Majumdar SN; Schehr G
    Phys Rev Lett; 2015 Mar; 114(11):110402. PubMed ID: 25839245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittency of height fluctuations in stationary state of the Kardar-Parisi-Zhang equation with infinitesimal surface tension in 1+1 dimensions.
    Tabei SM; Bahraminasab A; Masoudi AA; Mousavi SS; Reza Rahimi Tabar M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031101. PubMed ID: 15524500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper critical dimension of the Kardar-Parisi-Zhang equation.
    Schwartz M; Perlsman E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):050103. PubMed ID: 23004690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kardar-Parisi-Zhang equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall.
    Barraquand G; Le Doussal P
    Phys Rev E; 2021 Aug; 104(2-1):024502. PubMed ID: 34525573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Width and extremal height distributions of fluctuating interfaces with window boundary conditions.
    Carrasco IS; Oliveira TJ
    Phys Rev E; 2016 Jan; 93(1):012801. PubMed ID: 26871135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation: numerical study.
    Agoritsas E; Lecomte V; Giamarchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062405. PubMed ID: 23848695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.