These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11088386)

  • 1. Reorientational relaxation of a linear probe molecule in a simple glassy liquid.
    Götze W; Singh AP; Voigtmann T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6934-49. PubMed ID: 11088386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid.
    Chong SH; Götze W; Singh AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011206. PubMed ID: 11304245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural relaxation in a system of dumbbell molecules.
    Chong SH; Götze W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051201. PubMed ID: 12059539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal and nonuniversal features of glassy relaxation in propylene carbonate.
    Gotze W; Voigtmann T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4133-47. PubMed ID: 11088208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized mode-coupling theory of the glass transition. II. Analytical scaling laws.
    Luo C; Janssen LMC
    J Chem Phys; 2020 Dec; 153(21):214506. PubMed ID: 33291926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-squared displacement of a molecule moving in a glassy system.
    Chong SH; Götze W; Mayr MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011503. PubMed ID: 11461258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the weak steric hindrance scenario in the supercooled-state reorientational dynamics.
    Chong SH; Moreno AJ; Sciortino F; Kob W
    Phys Rev Lett; 2005 Jun; 94(21):215701. PubMed ID: 16090330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Idealized glass transitions for a system of dumbbell molecules.
    Chong SH; Götze W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041503. PubMed ID: 12005825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic arrest in a liquid of symmetric dumbbells: reorientational hopping for small molecular elongations.
    Moreno AJ; Chong SH; Kob W; Sciortino F
    J Chem Phys; 2005 Nov; 123(20):204505. PubMed ID: 16351279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depolarized light scattering spectra of molecular liquids: Described in terms of mode coupling theory.
    Schmidtke B; Rössler EA
    J Chem Phys; 2014 Jul; 141(4):044511. PubMed ID: 25084930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
    Weysser F; Puertas AM; Fuchs M; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cole-Cole law for critical dynamics in glass-forming liquids.
    Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011503. PubMed ID: 16907096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin.
    Zhang Y; Tyagi M; Mamontov E; Chen SH
    J Phys Condens Matter; 2012 Feb; 24(6):064112. PubMed ID: 22277723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural relaxation in quantum supercooled liquids: A mode-coupling approach.
    Das A; Rabani E; Miyazaki K; Harbola U
    J Chem Phys; 2021 Jan; 154(1):014502. PubMed ID: 33412873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature.
    Karmakar S; Dasgupta C; Sastry S
    Phys Rev Lett; 2016 Feb; 116(8):085701. PubMed ID: 26967425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Heterogeneities in Colloidal Supercooled Liquids: Experimental Tests of Inhomogeneous Mode Coupling Theory.
    Mishra CK; Habdas P; Yodh AG
    J Phys Chem B; 2019 Jun; 123(24):5181-5188. PubMed ID: 31132279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulations and mode-coupling theory of glass-forming confined hard-sphere fluids.
    Jung G; Franosch T
    Phys Rev E; 2023 May; 107(5-1):054101. PubMed ID: 37328986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mode-coupling theory for supercooled liquids: application to water.
    Fabbian L; Latz A; Schilling R; Sciortino F; Tartaglia P; Theis C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5768-77. PubMed ID: 11970473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of composition changes on the structural relaxation of a binary mixture.
    Götze W; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021502. PubMed ID: 12636679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.