These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 11088412)
1. Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. Höfler K; Schwarzer S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):7146-60. PubMed ID: 11088412 [TBL] [Abstract][Full Text] [Related]
2. Rheology of non-Brownian suspensions. Denn MM; Morris JF Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134 [TBL] [Abstract][Full Text] [Related]
3. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions. Iwashita T; Yamamoto R Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170 [TBL] [Abstract][Full Text] [Related]
4. Coefficient of restitution for wet particles. Gollwitzer F; Rehberg I; Kruelle CA; Huang K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011303. PubMed ID: 23005407 [TBL] [Abstract][Full Text] [Related]
5. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Colagrossi A; Souto-Iglesias A; Antuono M; Marrone S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023302. PubMed ID: 23496634 [TBL] [Abstract][Full Text] [Related]
6. Large eddy simulation of a particle-laden turbulent plane jet. Jin HH; Luo K; Fan JR; Cen KF J Zhejiang Univ Sci; 2003; 4(2):175-80. PubMed ID: 12659231 [TBL] [Abstract][Full Text] [Related]
7. Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows. Finn J; Apte SV Chaos; 2013 Mar; 23(1):013145. PubMed ID: 23556982 [TBL] [Abstract][Full Text] [Related]
8. Vortex core identification in viscous hydrodynamics. Finn LI; Boghosian BM; Kottke CN Philos Trans A Math Phys Eng Sci; 2005 Aug; 363(1833):1937-48. PubMed ID: 16099758 [TBL] [Abstract][Full Text] [Related]
9. Anomalous diffusion for inertial particles under gravity in parallel flows. Martins Afonso M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063021. PubMed ID: 25019893 [TBL] [Abstract][Full Text] [Related]
10. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers. Fakhari A; Lee T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023304. PubMed ID: 23496636 [TBL] [Abstract][Full Text] [Related]
11. Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries. Hofer M; Perktold K Biorheology; 1997; 34(4-5):261-79. PubMed ID: 9578803 [TBL] [Abstract][Full Text] [Related]
12. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation. Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulation and measurement of liquid hold-up in biporous media containing discrete stagnant zones. Kandhai D; Tallarek U; Hlushkou D; Hoekstra A; Sloot PM; Van As H Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):521-34. PubMed ID: 16214692 [TBL] [Abstract][Full Text] [Related]
14. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H; Valocchi AJ; Zhang Y; Kang Q Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [TBL] [Abstract][Full Text] [Related]
15. Direct numerical simulation of dispersed particles in a compressible fluid. Tatsumi R; Yamamoto R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066704. PubMed ID: 23005240 [TBL] [Abstract][Full Text] [Related]
16. Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles. Heinen M; Banchio AJ; Nägele G J Chem Phys; 2011 Oct; 135(15):154504. PubMed ID: 22029321 [TBL] [Abstract][Full Text] [Related]
17. Rheology and contact lifetimes in dense granular flows. Silbert LE; Grest GS; Brewster R; Levine AJ Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867 [TBL] [Abstract][Full Text] [Related]
18. Derivative particles for simulating detailed movements of fluids. Song OY; Kim D; Ko HS IEEE Trans Vis Comput Graph; 2007; 13(4):711-9. PubMed ID: 17495331 [TBL] [Abstract][Full Text] [Related]
19. Distribution of velocity gradients and rate of caustic formation in turbulent aerosols at finite Kubo numbers. Gustavsson K; Mehlig B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023016. PubMed ID: 23496619 [TBL] [Abstract][Full Text] [Related]
20. Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles. Yamamoto R; Molina JJ; Nakayama Y Soft Matter; 2021 Apr; 17(16):4226-4253. PubMed ID: 33908448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]