These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 11088560)

  • 1. Bacterial turgor pressure can be measured by atomic force microscopy.
    Arnoldi M; Fritz M; Bäuerlein E; Radmacher M; Sackmann E; Boulbitch A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1034-44. PubMed ID: 11088560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments.
    Weber A; Braybrook S; Huflejt M; Mosca G; Routier-Kierzkowska AL; Smith RS
    J Exp Bot; 2015 Jun; 66(11):3229-41. PubMed ID: 25873663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells.
    Deng Y; Sun M; Shaevitz JW
    Phys Rev Lett; 2011 Oct; 107(15):158101. PubMed ID: 22107320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Force Microscopy to Study Cell Wall Mechanics in Plants.
    Majda M
    Methods Mol Biol; 2021; 2200():349-369. PubMed ID: 33175387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy.
    Zhao L; Schaefer D; Xu H; Modi SJ; LaCourse WR; Marten MR
    Biotechnol Prog; 2005; 21(1):292-9. PubMed ID: 15903268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the adaption of bacterial cell wall mechanical integrity and turgor to different chemical or mechanical environments.
    Han R; Feng XQ; Vollmer W; Stoodley P; Chen J
    J Colloid Interface Sci; 2023 Jun; 640():510-520. PubMed ID: 36878069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Atomic Force Microscopy to Measure Mechanical Properties and Turgor Pressure of Plant Cells and Plant Tissues.
    Bovio S; Long Y; Monéger F
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31355790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation of the envelope of a spherical gram-negative bacterium during the atomic force microscopic measurements.
    Boulbitch A
    J Electron Microsc (Tokyo); 2000; 49(3):459-62. PubMed ID: 11108035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the interconnected turgor pressure and envelope elasticity of live bacterial cells.
    Zhang H; Wang H; Wilksch JJ; Strugnell RA; Gee ML; Feng XQ
    Soft Matter; 2021 Mar; 17(8):2042-2049. PubMed ID: 33592087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous determination of the mechanical properties and turgor of a single bacterial cell using atomic force microscopy.
    Han R; Vollmer W; Perry JD; Stoodley P; Chen J
    Nanoscale; 2022 Aug; 14(33):12060-12068. PubMed ID: 35946610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of a magnetotactic spirillum.
    Balkwill DL; Maratea D; Blakemore RP
    J Bacteriol; 1980 Mar; 141(3):1399-408. PubMed ID: 6245069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetosomes and magnetite crystals produced by magnetotactic bacteria as resolved by atomic force microscopy and transmission electron microscopy.
    Oestreicher Z; Valverde-Tercedor C; Chen L; Jimenez-Lopez C; Bazylinski DA; Casillas-Ituarte NN; Lower SK; Lower BH
    Micron; 2012 Dec; 43(12):1331-5. PubMed ID: 22578947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation.
    Ma H; Snook LA; Kaminskyj SGW; Dahms TES
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3679-3688. PubMed ID: 16272389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic shell theory for plant cell wall stiffness reveals contributions of cell wall elasticity and turgor pressure in AFM measurement.
    Tsugawa S; Yamasaki Y; Horiguchi S; Zhang T; Muto T; Nakaso Y; Ito K; Takebayashi R; Okano K; Akita E; Yasukuni R; Demura T; Mimura T; Kawaguchi K; Hosokawa Y
    Sci Rep; 2022 Aug; 12(1):13044. PubMed ID: 35915101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay between cell wall mechanical properties and the cell cycle in Staphylococcus aureus.
    Bailey RG; Turner RD; Mullin N; Clarke N; Foster SJ; Hobbs JK
    Biophys J; 2014 Dec; 107(11):2538-45. PubMed ID: 25468333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina.
    Milkevych V; Donose BC; Juste-Poinapen N; Batstone DJ
    Colloids Surf B Biointerfaces; 2015 Feb; 126():303-12. PubMed ID: 25578422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy.
    Gibbs E; Hsu J; Barth K; Goss JW
    Yeast; 2021 Aug; 38(8):480-492. PubMed ID: 33913187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative microelastic mapping of living cells by atomic force microscopy.
    A-Hassan E; Heinz WF; Antonik MD; D'Costa NP; Nageswaran S; Schoenenberger CA; Hoh JH
    Biophys J; 1998 Mar; 74(3):1564-78. PubMed ID: 9512052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.
    Digiuni S; Berne-Dedieu A; Martinez-Torres C; Szecsi J; Bendahmane M; Arneodo A; Argoul F
    Biophys J; 2015 May; 108(9):2235-48. PubMed ID: 25954881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular Heterogeneity in Pressure and Growth Emerges from Tissue Topology and Geometry.
    Long Y; Cheddadi I; Mosca G; Mirabet V; Dumond M; Kiss A; Traas J; Godin C; Boudaoud A
    Curr Biol; 2020 Apr; 30(8):1504-1516.e8. PubMed ID: 32169211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.