These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 11088600)
1. Improved rosenbluth monte carlo scheme for cluster counting and lattice animal enumeration. Care CM; Ettelaie R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1397-404. PubMed ID: 11088600 [TBL] [Abstract][Full Text] [Related]
2. Rosenbluth chain cluster growth in the study of micelle self-assembly. Dalby T; Care CM Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):6152-60. PubMed ID: 11969600 [TBL] [Abstract][Full Text] [Related]
3. Auxiliary-Field Monte Carlo Method to Tackle Strong Interactions and Frustration in Lattice Bosons. Malpetti D; Roscilde T Phys Rev Lett; 2017 Jul; 119(4):040602. PubMed ID: 29341763 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo simulations of lattice models for single polymer systems. Hsu HP J Chem Phys; 2014 Oct; 141(16):164903. PubMed ID: 25362337 [TBL] [Abstract][Full Text] [Related]
5. Annealing contour Monte Carlo algorithm for structure optimization in an off-lattice protein model. Liang F J Chem Phys; 2004 Apr; 120(14):6756-63. PubMed ID: 15267570 [TBL] [Abstract][Full Text] [Related]
6. On the inner structure and topology of clusters in two-component lipid bilayers. Comparison of monomer and dimer Ising models. Sugár IP J Phys Chem B; 2008 Sep; 112(37):11631-42. PubMed ID: 18729402 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo algorithm for simulating the O(N) loop model on the square lattice. Silva AM; Schakel AM; Vasconcelos GL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):021301. PubMed ID: 24032768 [TBL] [Abstract][Full Text] [Related]
8. A Rejection Scheme for Off-Lattice Kinetic Monte Carlo Simulation. Ruzayqat HM; Schulze TP J Chem Theory Comput; 2018 Jan; 14(1):48-54. PubMed ID: 29211471 [TBL] [Abstract][Full Text] [Related]
9. Flexible polyelectrolyte simulations at the Poisson-Boltzmann level: a comparison of the kink-jump and multigrid configurational-bias Monte Carlo methods. Tsonchev S; Coalson RD; Liu A; Beck TL J Chem Phys; 2004 May; 120(20):9817-21. PubMed ID: 15267998 [TBL] [Abstract][Full Text] [Related]
10. A Wang-Landau study of a lattice model for lipid bilayer self-assembly. Gai L; Maerzke K; Cummings PT; McCabe C J Chem Phys; 2012 Oct; 137(14):144901. PubMed ID: 23061859 [TBL] [Abstract][Full Text] [Related]
11. Monte Carlo simulation of dense polymer melts using event chain algorithms. Kampmann TA; Boltz HH; Kierfeld J J Chem Phys; 2015 Jul; 143(4):044105. PubMed ID: 26233105 [TBL] [Abstract][Full Text] [Related]
12. Stretching semiflexible polymer chains: evidence for the importance of excluded volume effects from Monte Carlo simulation. Hsu HP; Binder K J Chem Phys; 2012 Jan; 136(2):024901. PubMed ID: 22260610 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo tests of nucleation concepts in the lattice gas model. Schmitz F; Virnau P; Binder K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053302. PubMed ID: 23767652 [TBL] [Abstract][Full Text] [Related]
14. Cluster Monte Carlo simulation of the transverse Ising model. Blöte HW; Deng Y Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066110. PubMed ID: 12513350 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585 [TBL] [Abstract][Full Text] [Related]
16. Escape transition of a polymer chain from a nanotube: how to avoid spurious results by use of the force-biased pruned-enriched Rosenbluth algorithm. Hsu HP; Binder K; Klushin LI; Skvortsov AM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041803. PubMed ID: 18999448 [TBL] [Abstract][Full Text] [Related]
17. Testing a new Monte Carlo algorithm for protein folding. Bastolla U; Frauenkron H; Gerstner E; Grassberger P; Nadler W Proteins; 1998 Jul; 32(1):52-66. PubMed ID: 9672042 [TBL] [Abstract][Full Text] [Related]
18. Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with a directed-update scheme. Carleo G; Becca F; Moroni S; Baroni S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046710. PubMed ID: 21230415 [TBL] [Abstract][Full Text] [Related]
19. A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach. Gauthier MG; Slater GW J Chem Phys; 2008 Feb; 128(6):065103. PubMed ID: 18282074 [TBL] [Abstract][Full Text] [Related]
20. Properties of star-branched and linear chains in confined space. A Monte-Carlo study. Romiszowski P; Sikorski A J Mol Model; 2005 Sep; 11(4-5):335-40. PubMed ID: 16007434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]