These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11088739)

  • 1. Analysis of correlations and search for evidence of deterministic chaos in rhythmic motor control by the human brain.
    Roberts S; Eykholt R; Thaut MH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2597-607. PubMed ID: 11088739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults.
    De Guio F; Jacobson SW; Molteno CD; Jacobson JL; Meintjes EM
    Pediatr Neurol; 2012 Feb; 46(2):94-100. PubMed ID: 22264703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of sensory information in the production of periodic finger-tapping sequences.
    Billon M; Semjen A; Cole J; Gauthier G
    Exp Brain Res; 1996 Jun; 110(1):117-30. PubMed ID: 8817263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic and stochastic features of rhythmic human movement.
    van Mourik AM; Daffertshofer A; Beek PJ
    Biol Cybern; 2006 Mar; 94(3):233-44. PubMed ID: 16380845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization.
    Thaut MH; Kenyon GP
    Hum Mov Sci; 2003 Aug; 22(3):321-38. PubMed ID: 12967761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time intervals production in tapping and oscillatory motion.
    Delignières D; Lemoine L; Torre K
    Hum Mov Sci; 2004 Sep; 23(2):87-103. PubMed ID: 15474171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of short-latency intracortical inhibition in human primary motor cortex during synchronised versus syncopated finger movements.
    Byblow WD; Stinear CM
    Exp Brain Res; 2006 Jan; 168(1-2):287-93. PubMed ID: 16328278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal prediction abilities are mediated by motor effector and rhythmic expertise.
    Manning FC; Harris J; Schutz M
    Exp Brain Res; 2017 Mar; 235(3):861-871. PubMed ID: 27909748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhythmic arm movement is not discrete.
    Schaal S; Sternad D; Osu R; Kawato M
    Nat Neurosci; 2004 Oct; 7(10):1136-43. PubMed ID: 15452580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic pattern analysis of coordination between breathing and rhythmic arm movements in humans.
    Temprado JJ; Milliex L; Grélot L; Coyle T; Calvin S; Laurent M
    Neurosci Lett; 2002 Sep; 329(3):314-8. PubMed ID: 12183039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering beat deafness: detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks.
    Dalla Bella S; Sowiński J
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25867797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does the brain create rhythms?
    Szirmai I
    Ideggyogy Sz; 2010 Jan; 63(1-2):13-23. PubMed ID: 20420120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations.
    Blais M; Albaret JM; Tallet J
    Exp Brain Res; 2015 Nov; 233(11):3261-9. PubMed ID: 26238405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of timing errors in human sensorimotor coordination.
    Chen Y; Ding M; Kelso JA
    J Mot Behav; 2001 Mar; 33(1):3-8. PubMed ID: 11265052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos.
    Palus M
    Biol Cybern; 1996 Nov; 75(5):389-96. PubMed ID: 8983161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of the complexity of rhythmic finger tapping.
    Dhamala M; Pagnoni G; Wiesenfeld K; Zink CF; Martin M; Berns GS
    Neuroimage; 2003 Oct; 20(2):918-26. PubMed ID: 14568462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping.
    Lewis PA; Wing AM; Pope PA; Praamstra P; Miall RC
    Neuropsychologia; 2004; 42(10):1301-12. PubMed ID: 15193939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEG responses during rhythmic finger tapping in humans to phasic stimulation and their interpretation based on neural mechanisms.
    Yoshino K; Takagi K; Nomura T; Sato S; Tonoike M
    Biol Cybern; 2002 Jun; 86(6):483-96. PubMed ID: 12111276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Motor programming in bimanual rhythmic finger tapping].
    Kurganskiĭ AV
    Fiziol Cheloveka; 1996; 22(4):44-9. PubMed ID: 8964305
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.