These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 11088784)
1. Analytic solutions of the rayleigh equation for linear density profiles. Cherfils C; Lafitte O Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2967-70. PubMed ID: 11088784 [TBL] [Abstract][Full Text] [Related]
2. Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Mikaelian KO Phys Rev E; 2019 Feb; 99(2-1):023112. PubMed ID: 30934361 [TBL] [Abstract][Full Text] [Related]
3. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation. Dong M; Fan Z; Yu C Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233 [TBL] [Abstract][Full Text] [Related]
4. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016325. PubMed ID: 20365478 [TBL] [Abstract][Full Text] [Related]
5. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Goncharov VN Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101 [TBL] [Abstract][Full Text] [Related]
6. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
7. Edge pinch instability of liquid metal sheet in a transverse high-frequency ac magnetic field. Priede J; Etay J; Fautrelle Y Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066303. PubMed ID: 16906972 [TBL] [Abstract][Full Text] [Related]
8. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions. Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551 [TBL] [Abstract][Full Text] [Related]
9. Numerical computation of the Rayleigh-Taylor instability for a viscous fluid with regularized interface properties. González-Gutiérrez LM; de Andrea González A Phys Rev E; 2019 Jul; 100(1-1):013101. PubMed ID: 31499828 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive diagnosis of growth rates of the ablative Rayleigh-Taylor instability. Azechi H; Sakaiya T; Fujioka S; Tamari Y; Otani K; Shigemori K; Nakai M; Shiraga H; Miyanaga N; Mima K Phys Rev Lett; 2007 Jan; 98(4):045002. PubMed ID: 17358782 [TBL] [Abstract][Full Text] [Related]
11. Fastest growing linear Rayleigh-Taylor modes at solid/fluid and solid/solid interfaces. Terrones G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036306. PubMed ID: 15903573 [TBL] [Abstract][Full Text] [Related]
12. Extended computation of the viscous Rayleigh-Taylor instability in a horizontally confined flow. Martinez-Carrascal J; Calderon-Sanchez J; González-Gutiérrez LM; de Andrea González A Phys Rev E; 2021 May; 103(5-1):053114. PubMed ID: 34134218 [TBL] [Abstract][Full Text] [Related]
14. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number. Ye W; Zhang W; He XT Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057401. PubMed ID: 12059764 [TBL] [Abstract][Full Text] [Related]
16. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
17. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Morgan BE; Schilling O; Hartland TA Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443 [TBL] [Abstract][Full Text] [Related]
18. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations. Zhou ZR; Zhang YS; Tian BL Phys Rev E; 2018 Mar; 97(3-1):033108. PubMed ID: 29776047 [TBL] [Abstract][Full Text] [Related]
19. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling. Schilling O; Mueschke NJ Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290 [TBL] [Abstract][Full Text] [Related]
20. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]