These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 11088784)
21. Stability boundaries for the Rayleigh-Taylor instability in accelerated elastic-plastic solid slabs. Piriz AR; Piriz SA; Tahir NA Phys Rev E; 2019 Dec; 100(6-1):063104. PubMed ID: 31962442 [TBL] [Abstract][Full Text] [Related]
22. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452 [TBL] [Abstract][Full Text] [Related]
23. Rayleigh-Taylor instability of steady fronts described by the Kuramoto-Sivashinsky equation. Vilela PM; Vasquez DA Chaos; 2014 Jun; 24(2):023135. PubMed ID: 24985449 [TBL] [Abstract][Full Text] [Related]
24. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes. Ikegawa T; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026404. PubMed ID: 12636819 [TBL] [Abstract][Full Text] [Related]
25. The Inhibition of the Rayleigh-Taylor Instability by Rotation. Baldwin KA; Scase MM; Hill RJ Sci Rep; 2015 Jul; 5():11706. PubMed ID: 26130005 [TBL] [Abstract][Full Text] [Related]
26. Mechanism for the faraday instability in viscous liquids. Kumar S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1416-9. PubMed ID: 11088603 [TBL] [Abstract][Full Text] [Related]
27. Rayleigh-Taylor instability of viscous fluids with phase change. Kim BJ; Kim KD Phys Rev E; 2016 Apr; 93():043123. PubMed ID: 27176406 [TBL] [Abstract][Full Text] [Related]
28. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability. Lau YY; Zier JC; Rittersdorf IM; Weis MR; Gilgenbach RM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066405. PubMed ID: 21797496 [TBL] [Abstract][Full Text] [Related]
29. Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids. Piriz SA; Piriz AR; Tahir NA Phys Rev E; 2017 May; 95(5-1):053108. PubMed ID: 28618602 [TBL] [Abstract][Full Text] [Related]
30. Bubble interaction model for hydrodynamic unstable mixing. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362 [TBL] [Abstract][Full Text] [Related]
31. Small Atwood number Rayleigh-Taylor experiments. Andrews MJ; Dalziel SB Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1663-79. PubMed ID: 20211879 [TBL] [Abstract][Full Text] [Related]
32. Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meskov instabilities. Morgan BE; Wickett ME Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043002. PubMed ID: 25974575 [TBL] [Abstract][Full Text] [Related]
33. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Liu W; Wang X; Liu X; Yu C; Fang M; Ye W Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289 [TBL] [Abstract][Full Text] [Related]
34. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas. Srinivasan B; Dimonte G; Tang XZ Phys Rev Lett; 2012 Apr; 108(16):165002. PubMed ID: 22680725 [TBL] [Abstract][Full Text] [Related]