These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 11088784)
41. Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width. Piriz SA; Piriz AR; Tahir NA Phys Rev E; 2018 Apr; 97(4-1):043106. PubMed ID: 29758639 [TBL] [Abstract][Full Text] [Related]
42. Conditions and growth rate of Rayleigh instability in a Hall thruster under the effect of ion temperature. Malik HK; Singh S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036406. PubMed ID: 21517603 [TBL] [Abstract][Full Text] [Related]
43. Asymptotic behavior of the Rayleigh-Taylor instability. Duchemin L; Josserand C; Clavin P Phys Rev Lett; 2005 Jun; 94(22):224501. PubMed ID: 16090402 [TBL] [Abstract][Full Text] [Related]
44. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow. Priede J; Gerbeth G Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046310. PubMed ID: 19518336 [TBL] [Abstract][Full Text] [Related]
45. Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface. Burmistrov SN; Dubovskii LB; Tsymbalenko VL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051606. PubMed ID: 19518466 [TBL] [Abstract][Full Text] [Related]
47. Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry. Sakaiya T; Azechi H; Matsuoka M; Izumi N; Nakai M; Shigemori K; Shiraga H; Sunahara A; Takabe H; Yamanaka T Phys Rev Lett; 2002 Apr; 88(14):145003. PubMed ID: 11955155 [TBL] [Abstract][Full Text] [Related]
48. Self-gravity driven instabilities at accelerated interfaces. Hueckstaedt RM; Hunter JH; Lovelace RV Ann N Y Acad Sci; 2005 Jun; 1045():246-59. PubMed ID: 15980316 [TBL] [Abstract][Full Text] [Related]
49. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438 [TBL] [Abstract][Full Text] [Related]
51. Density-driven instabilities of variable-viscosity miscible fluids in a capillary tube. Meiburg E; Vanaparthy SH; Payr MD; Wilhelm D Ann N Y Acad Sci; 2004 Nov; 1027():383-402. PubMed ID: 15644370 [TBL] [Abstract][Full Text] [Related]
52. A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates. George E; Glimm J; Li XL; Marchese A; Xu ZL Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2587-92. PubMed ID: 11854452 [TBL] [Abstract][Full Text] [Related]
53. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory. Zhan Y; Shizgal BD Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642 [TBL] [Abstract][Full Text] [Related]
54. Rayleigh-Taylor instability with complex acceleration history. Dimonte G; Ramaprabhu P; Andrews M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112 [TBL] [Abstract][Full Text] [Related]
55. A New Approach to the Rayleigh-Taylor Instability. Gebhard B; Kolumbán JJ; Székelyhidi L Arch Ration Mech Anal; 2021; 241(3):1243-1280. PubMed ID: 34720113 [TBL] [Abstract][Full Text] [Related]
56. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids. Tao JJ; He XT; Ye WH; Busse FH Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013001. PubMed ID: 23410420 [TBL] [Abstract][Full Text] [Related]
57. Linear analysis of incompressible Rayleigh-Taylor instability in solids. Piriz AR; Cela JJ; Tahir NA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046305. PubMed ID: 19905434 [TBL] [Abstract][Full Text] [Related]
58. Evolution of Rayleigh-Taylor instability under interface discontinuous acceleration induced by radiation. Hu ZX; Zhang YS; Tian BL Phys Rev E; 2020 Apr; 101(4-1):043115. PubMed ID: 32422729 [TBL] [Abstract][Full Text] [Related]
59. Rayleigh-Taylor instability in magnetohydrodynamics with finite resistivity in a horizontal magnetic field. Sun YB; Gou JN; Cao CY; Wang C; Zeng RH Phys Rev E; 2023 Dec; 108(6-2):065208. PubMed ID: 38243492 [TBL] [Abstract][Full Text] [Related]