These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 11088789)
1. Rotating hele-shaw cells with ferrofluids. Miranda JA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2985-8. PubMed ID: 11088789 [TBL] [Abstract][Full Text] [Related]
2. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions. Lira SA; Miranda JA Phys Rev E; 2016 Jan; 93(1):013129. PubMed ID: 26871176 [TBL] [Abstract][Full Text] [Related]
3. Parallel flow in hele-shaw cells with ferrofluids. Miranda JA; Widom M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):2114-7. PubMed ID: 11046508 [TBL] [Abstract][Full Text] [Related]
4. Generalized elastica patterns in a curved rotating Hele-Shaw cell. Brandão R; Miranda JA Phys Rev E; 2017 Aug; 96(2-1):023103. PubMed ID: 28950512 [TBL] [Abstract][Full Text] [Related]
5. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions. Oliveira RM; Miranda JA; Leandro ES Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931 [TBL] [Abstract][Full Text] [Related]
6. Azimuthal field instability in a confined ferrofluid. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023020. PubMed ID: 25768610 [TBL] [Abstract][Full Text] [Related]
7. Elastic fingering in rotating Hele-Shaw flows. Carvalho GD; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053019. PubMed ID: 25353892 [TBL] [Abstract][Full Text] [Related]
8. Effects of circular rigid boundaries and Coriolis forces on the interfacial instability in a rotating annular Hele-Shaw cell. Abidate A; Aniss S; Caballina O; Souhar M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046307. PubMed ID: 17500993 [TBL] [Abstract][Full Text] [Related]
9. Capillary and geometrically driven fingering instability in nonflat Hele-Shaw cells. Brandão R; Miranda JA Phys Rev E; 2017 Mar; 95(3-1):033104. PubMed ID: 28415178 [TBL] [Abstract][Full Text] [Related]
10. Shape instabilities in confined ferrofluids under crossed magnetic fields. Oliveira RM; Coutinho ÍM; Anjos PHA; Miranda JA Phys Rev E; 2021 Dec; 104(6-2):065113. PubMed ID: 35030845 [TBL] [Abstract][Full Text] [Related]
11. Controlling fingering instabilities in rotating ferrofluids. Jackson DP; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017301. PubMed ID: 12636637 [TBL] [Abstract][Full Text] [Related]
12. Interfacial instability of two superimposed immiscible viscous fluids in a vertical Hele-Shaw cell under horizontal periodic oscillations. Bouchgl J; Aniss S; Souhar M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023027. PubMed ID: 24032943 [TBL] [Abstract][Full Text] [Related]
13. Tuning a magnetic field to generate spinning ferrofluid droplets with controllable speed via nonlinear periodic interfacial waves. Yu Z; Christov IC Phys Rev E; 2021 Jan; 103(1-1):013103. PubMed ID: 33601568 [TBL] [Abstract][Full Text] [Related]
14. Saffman-Taylor problem on a sphere. Parisio F; Moraes F; Miranda JA; Widom M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036307. PubMed ID: 11308768 [TBL] [Abstract][Full Text] [Related]
15. Wrinkling and folding patterns in a confined ferrofluid droplet with an elastic interface. Anjos PHA; Carvalho GD; Lira SA; Miranda JA Phys Rev E; 2019 Feb; 99(2-1):022608. PubMed ID: 30934336 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear traveling waves in confined ferrofluids. Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056301. PubMed ID: 23214870 [TBL] [Abstract][Full Text] [Related]
17. Radial viscous fingering in miscible Hele-Shaw flows: a numerical study. Chen CY; Huang CW; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016306. PubMed ID: 18764049 [TBL] [Abstract][Full Text] [Related]
18. Using the dynamic, expanding liquid-liquid interface in a Hele-Shaw cell in crystal growth and nanoparticle assembly. Rautaray D; Kavathekar R; Sastry M Faraday Discuss; 2005; 129():205-17; discussion 275-89. PubMed ID: 15715308 [TBL] [Abstract][Full Text] [Related]
19. Coriolis effects on rotating Hele-Shaw flows: a conformal-mapping approach. Miranda JA; Gadêlha H; Dorsey AT Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066306. PubMed ID: 21230733 [TBL] [Abstract][Full Text] [Related]
20. Viscosity contrast effects on fingering formation in rotating Hele-Shaw flows. Miranda JA; Alvarez-Lacalle E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026306. PubMed ID: 16196710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]