These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11088901)

  • 1. Nonlinear analysis of the shearing instability in granular gases.
    Soto R; Mareschal M; Malek Mansour M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3836-42. PubMed ID: 11088901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear state of freely evolving granular gases.
    Brey JJ; Ruiz-Montero MJ; Domínguez A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041301. PubMed ID: 18999412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear theory of nonstationary low Mach number channel flows of freely cooling nearly elastic granular gases.
    Meerson B; Fouxon I; Vilenkin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021307. PubMed ID: 18352022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of rarefied granular gases.
    Risso D; Cordero P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021304. PubMed ID: 11863513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamics of granular gases of inelastic and rough hard disks or spheres. II. Stability analysis.
    Megías A; Santos A
    Phys Rev E; 2021 Sep; 104(3-1):034902. PubMed ID: 34654064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuating hydrodynamics for dilute granular gases.
    Brey JJ; Maynar P; García de Soria MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051305. PubMed ID: 19518447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuating hydrodynamics for dilute granular gases: a Monte Carlo study.
    Costantini G; Puglisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011305. PubMed ID: 20866609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power-law decay of the velocity autocorrelation function of a granular fluid in the homogeneous cooling state.
    Brey JJ; Ruiz-Montero MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012202. PubMed ID: 25679614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport coefficients of a granular gas of inelastic rough hard spheres.
    Kremer GM; Santos A; Garzó V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022205. PubMed ID: 25215731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy fluctuations in the homogeneous cooling state of granular gases.
    Brey JJ; García de Soria MI; Maynar P; Ruiz-Montero MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011302. PubMed ID: 15324044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory effect in uniformly heated granular gases.
    Trizac E; Prados A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012204. PubMed ID: 25122296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity distribution of inelastic granular gas in a homogeneous cooling state.
    Nakanishi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):010301. PubMed ID: 12636477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic fourier flow have in common?
    Reyes FV; Santos A; Garzó V
    Phys Rev Lett; 2010 Jan; 104(2):028001. PubMed ID: 20366626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shearing instability of a dilute granular mixture.
    Brey JJ; Ruiz-Montero MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022210. PubMed ID: 23496508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granular mixtures modeled as elastic hard spheres subject to a drag force.
    Vega Reyes F; Garzó V; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061306. PubMed ID: 17677254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inelastic hard dimer gas: a nonspherical model for granular matter.
    Costantini G; Marini Bettolo Marconi U; Kalibaeva G; Ciccotti G
    J Chem Phys; 2005 Apr; 122(16):164505. PubMed ID: 15945691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dense fluid transport for inelastic hard spheres.
    Garzó V; Dufty JW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5895-911. PubMed ID: 11969571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.
    Sirmas N; Radulescu MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023003. PubMed ID: 25768593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases.
    Mitrano PP; Garzó V; Hilger AM; Ewasko CJ; Hrenya CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041303. PubMed ID: 22680465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instabilities in a free granular fluid described by the Enskog equation.
    Garzó V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021106. PubMed ID: 16196545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.