These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11089040)

  • 1. Raman spectroscopy of hypersonic shock waves.
    Ramos A; Mate B; Tejeda G; Fernandez JM; Montero S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4940-5. PubMed ID: 11089040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium processes in supersonic jets of N2, H2, and N2 + H2 mixtures: (II) shock waves.
    Ramos A; Tejeda G; Fernández JM; Montero S
    J Phys Chem A; 2010 Jul; 114(29):7761-8. PubMed ID: 20593875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental apparatus for investigating the propagation characteristics of the low-frequency electromagnetic waves in hypersonic plasma fluid generated by shock tube.
    Xie K; Sun B; Guo S; Quan L; Liu Y
    Rev Sci Instrum; 2019 Jul; 90(7):073503. PubMed ID: 31370434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer.
    Veysset D; Мaznev AA; Pezeril T; Kooi S; Nelson KA
    Sci Rep; 2016 Dec; 6(1):24. PubMed ID: 28003659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium molecular motion in a hypersonic shock wave.
    Pham-Van-Diep G; Erwin D; Muntz EP
    Science; 1989 Aug; 245(4918):624-6. PubMed ID: 17837616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence.
    Wang J; Wan M; Chen S; Xie C; Chen S
    Phys Rev E; 2018 Apr; 97(4-1):043108. PubMed ID: 29758607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of the H atom velocity distribution function within the shock wave of a hydrogen plasma jet.
    Mazouffre S; Vankan P; Engeln R; Schram DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066405. PubMed ID: 11736280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of strong-shock structure using the bimodal distribution function.
    Solovchuk MA; Sheu TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026301. PubMed ID: 21405900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of ultrahigh-velocity ionizing shocks with petawatt-class laser pulses.
    Nilson PM; Mangles SP; Willingale L; Kaluza MC; Thomas AG; Tatarakis M; Najmudin Z; Clarke RJ; Lancaster KL; Karsch S; Schreiber J; Evans RG; Dangor AE; Krushelnick K
    Phys Rev Lett; 2009 Dec; 103(25):255001. PubMed ID: 20366258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of shock structure using the bimodal distribution function.
    Solovchuk MA; Sheu TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056314. PubMed ID: 20866329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shock waves: The Maxwell-Cattaneo case.
    Uribe FJ
    Phys Rev E; 2016 Mar; 93(3):033110. PubMed ID: 27078450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.
    Kuriakose M; Skotak M; Misistia A; Kahali S; Sundaramurthy A; Chandra N
    PLoS One; 2016; 11(9):e0161597. PubMed ID: 27603017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized hydrodynamic theory of shock waves in rigid diatomic gases.
    Al-Ghoul M; Eu BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046303. PubMed ID: 11690142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of gas dynamics in operation conditions of a Pulsed Microplasma Cluster Source for nanostructured thin films deposition.
    Tafreshi HV; Piseri P; Benedek G; Milani P
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1140-9. PubMed ID: 16736779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersive nature of high mach number collisionless plasma shocks: Poynting flux of oblique whistler waves.
    Sundkvist D; Krasnoselskikh V; Bale SD; Schwartz SJ; Soucek J; Mozer F
    Phys Rev Lett; 2012 Jan; 108(2):025002. PubMed ID: 22324692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Additional Error of Inertial Sensors Induced by Hypersonic Flight Conditions.
    Karachun V; Mel'nick V; Korobiichuk I; Nowicki M; Szewczyk R; Kobzar S
    Sensors (Basel); 2016 Feb; 16(3):299. PubMed ID: 26927122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases.
    Vilquin A; Boudet JF; Kellay H
    Phys Rev E; 2016 Aug; 94(2-1):022905. PubMed ID: 27627378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized hydrodynamic theory of shock waves: Mach-number dependence of inverse shock width for nitrogen gas.
    Al-Ghoul M; Eu BC
    Phys Rev Lett; 2001 May; 86(19):4294-7. PubMed ID: 11328158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum shock waves and domain walls in the real-time dynamics of a superfluid unitary Fermi gas.
    Bulgac A; Luo YL; Roche KJ
    Phys Rev Lett; 2012 Apr; 108(15):150401. PubMed ID: 22587233
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.