These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11089072)

  • 1. Gaussian unitary ensemble statistics in a time-reversal invariant microwave triangular billiard.
    Dembowski C; Graf HD; Heine A; Rehfeld H; Richter A; Schmit C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):R4516-9. PubMed ID: 11089072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry.
    Dembowski C; Dietz B; Gräf HD; Heine A; Leyvraz F; Miski-Oglu M; Richter A; Seligman TH
    Phys Rev Lett; 2003 Jan; 90(1):014102. PubMed ID: 12570615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition from Gaussian-orthogonal to Gaussian-unitary ensemble in a microwave billiard with threefold symmetry.
    Schäfer R; Barth M; Leyvraz F; Müller M; Seligman TH; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016202. PubMed ID: 12241456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test of a numerical approach to the quantization of billiards.
    Dietz B; Heine A; Heuveline V; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026703. PubMed ID: 15783452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of level-spacing statistics in chaotic graphene billiards.
    Huang L; Lai YC; Grebogi C
    Chaos; 2011 Mar; 21(1):013102. PubMed ID: 21456816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-reversal-invariant hexagonal billiards with a point symmetry.
    Lima TA; do Carmo RB; Terto K; de Aguiar FM
    Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocorrelation function of level velocities for ray-splitting billiards.
    Hlushchuk Y; Kohler A; Bauch S; Sirko L; Blumel R; Barth M; Stockmann H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):366-70. PubMed ID: 11046274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral statistics in an open parametric billiard system.
    Dietz B; Heine A; Richter A; Bohigas O; Leboeuf P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):035201. PubMed ID: 16605589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking time reversal in a simple smooth chaotic system.
    Tomsovic S; Ullmo D; Nagano T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):067201. PubMed ID: 16241389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave Realization of the Chiral Orthogonal, Unitary, and Symplectic Ensembles.
    Rehemanjiang A; Richter M; Kuhl U; Stöckmann HJ
    Phys Rev Lett; 2020 Mar; 124(11):116801. PubMed ID: 32242696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaussian orthogonal ensemble statistics in a microwave stadium billiard with chaotic dynamics: Porter-Thomas distribution and algebraic decay of time correlations.
    Alt H; Gräf H; Harney HL; Hofferbert R; Lengeler H; Richter A; Schardt P; Weidenmüller HA
    Phys Rev Lett; 1995 Jan; 74(1):62-65. PubMed ID: 10057699
    [No Abstract]   [Full Text] [Related]  

  • 12. Comment on "Gaussian orthogonal ensemble statistics in a microwave stadium billiard with chaotic dynamics: Porter-Thomas distribution and algebraic decay of time correlations".
    Kudrolli A; Sridhar S
    Phys Rev Lett; 1996 Apr; 76(16):3036. PubMed ID: 10060854
    [No Abstract]   [Full Text] [Related]  

  • 13. Partial Time-Reversal Invariance Violation in a Flat, Superconducting Microwave Cavity with the Shape of a Chaotic Africa Billiard.
    Dietz B; Klaus T; Miski-Oglu M; Richter A; Wunderle M
    Phys Rev Lett; 2019 Oct; 123(17):174101. PubMed ID: 31702235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport in chaotic mesoscopic cavities: A Kwant and random matrix theory based exploration.
    Chandramouli RS; Srivastav RK; Kumar S
    Chaos; 2020 Dec; 30(12):123120. PubMed ID: 33380063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric correlations of the energy levels of ray-splitting billiards.
    Savytskyy N; Kohler A; Bauch S; Blümel R; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036211. PubMed ID: 11580426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of the ratio of two consecutive level spacings in orthogonal to unitary crossover ensembles.
    Sarkar A; Kothiyal M; Kumar S
    Phys Rev E; 2020 Jan; 101(1-1):012216. PubMed ID: 32069684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental test of a trace formula for a chaotic three-dimensional microwave cavity.
    Dembowski C; Dietz B; Gräf HD; Heine A; Papenbrock T; Richter A; Richter C
    Phys Rev Lett; 2002 Aug; 89(6):064101. PubMed ID: 12190582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of electric field distributions in a chaotic three-dimensional microwave rough billiard.
    Tymoshchuk O; Savytskyy N; Hul O; Bauch S; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):037202. PubMed ID: 17500835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First experimental evidence for chaos-assisted tunneling in a microwave annular billiard.
    Dembowski C; Graf H; Heine A; Hofferbert R; Rehfeld H; Richter A
    Phys Rev Lett; 2000 Jan; 84(5):867-70. PubMed ID: 11017392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission fluctuations in chaotic microwave billiards with and without time-reversal symmetry.
    Schanze H; Alves ER; Lewenkopf CH; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):065201. PubMed ID: 11736225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.