These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11089100)

  • 1. Long-time tails in the solid-body motion of a sphere immersed in a suspension.
    Cichocki B; Felderhof BU
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5383-8. PubMed ID: 11089100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-time tails of translational and rotational Brownian motion in a suspension of hard spheres.
    Hermanns HG; Felderhof BU
    J Chem Phys; 2007 Jan; 126(4):044902. PubMed ID: 17286504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion.
    Felderhof BU
    J Phys Chem B; 2005 Nov; 109(45):21406-12. PubMed ID: 16853777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jittery velocity relaxation of an elastic sphere immersed in a viscous incompressible fluid.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033001. PubMed ID: 24730931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the gap between molecular dynamics and hydrodynamics in nanoscale Brownian motions.
    Mizuta K; Ishii Y; Kim K; Matubayasi N
    Soft Matter; 2019 May; 15(21):4380-4390. PubMed ID: 31086871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impulse response function for Brownian motion.
    Makris N
    Soft Matter; 2021 Jun; 17(21):5410-5426. PubMed ID: 33969853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.
    Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    J Heat Transfer; 2013 Jan; 135(1):0110111-9. PubMed ID: 23814315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using dynamic light scattering to characterize mixed phase single particles levitated in a quasi-electrostatic balance.
    Krieger UK; Zardini AA
    Faraday Discuss; 2008; 137():377-88; discussion 403-24. PubMed ID: 18214115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity relaxation of a porous sphere immersed in a viscous incompressible fluid.
    Felderhof BU
    J Chem Phys; 2014 Apr; 140(13):134901. PubMed ID: 24712810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsteady motion of a perfectly slipping sphere.
    Kabarowski JK; Khair AS
    Phys Rev E; 2020 May; 101(5-1):053102. PubMed ID: 32575193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties of the rough hard sphere fluid.
    Kravchenko O; Thachuk M
    J Chem Phys; 2012 Jan; 136(4):044520. PubMed ID: 22299904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state hydrodynamics of a viscous incompressible fluid with spinning particles.
    Felderhof BU
    J Chem Phys; 2011 Dec; 135(23):234901. PubMed ID: 22191899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glassy dynamics of Brownian particles with velocity-dependent friction.
    Yazdi A; Sperl M
    Phys Rev E; 2016 Sep; 94(3-1):032602. PubMed ID: 27739784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.
    Chatterji A; Horbach J
    J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal translational swimming of a sphere at low Reynolds number.
    Felderhof BU; Jones RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023008. PubMed ID: 25215821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.