These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 11089121)
1. Double layer effects in laser-ablation plasma plumes. Bulgakova NM; Bulgakov AV; Bobrenok OF Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5624-35. PubMed ID: 11089121 [TBL] [Abstract][Full Text] [Related]
2. Multicharged carbon ion generation from laser plasma. Balki O; Elsayed-Ali HE Rev Sci Instrum; 2016 Nov; 87(11):113304. PubMed ID: 27910501 [TBL] [Abstract][Full Text] [Related]
3. Double layer acceleration of ions with differently charged states in a laser induced plasma. Yao X; Schneider CW; Bulgakova NM; Bulgakov AV; Lippert T Appl Phys A Mater Sci Process; 2023; 129(8):590. PubMed ID: 37529696 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of Ions Emission from Ultrashort Laser Produced Plasma. Elsied AM; Termini NC; Diwakar PK; Hassanein A Sci Rep; 2016 Dec; 6():38256. PubMed ID: 27905553 [TBL] [Abstract][Full Text] [Related]
5. Observation of ion acceleration in nanosecond laser generated plasma on a nickel thin film under rear ablation geometry. Thomas J; Joshi HC; Kumar A; Philip R Phys Rev E; 2020 Oct; 102(4-1):043205. PubMed ID: 33212696 [TBL] [Abstract][Full Text] [Related]
6. Carbon multicharged ion generation from laser-spark ion source. Rahman MM; Balki O; Elsayed-Ali HE Rev Sci Instrum; 2019 Sep; 90(9):093303. PubMed ID: 31575230 [TBL] [Abstract][Full Text] [Related]
7. Reflection of nanosecond Nd:YAG laser pulses in ablation of metals. Benavides O; Lebedeva O; Golikov V Opt Express; 2011 Oct; 19(22):21842-8. PubMed ID: 22109035 [TBL] [Abstract][Full Text] [Related]
8. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment. Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967 [TBL] [Abstract][Full Text] [Related]
9. Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO Udrea R; Irimiciuc SA; Craciun V Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676270 [TBL] [Abstract][Full Text] [Related]
10. Etch rate and spectroscopic ablation studies of Er:YAG laser-irradiated dentine. Farrar SR; Attril DC; Dickinson MR; King TA; Blinkhorn AS Appl Opt; 1997 Aug; 36(22):5641-6. PubMed ID: 18259390 [TBL] [Abstract][Full Text] [Related]
11. Comparison of high-order harmonic generation in uracil and thymine ablation plumes. Hutchison C; Ganeev RA; Castillejo M; Lopez-Quintas I; Zaïr A; Weber SJ; McGrath F; Abdelrahman Z; Oppermann M; Martin M; Lei DY; Maier SA; Tisch JW; Marangos JP Phys Chem Chem Phys; 2013 Aug; 15(29):12308-13. PubMed ID: 23774995 [TBL] [Abstract][Full Text] [Related]
12. Optical evidence for reactive processes when embedding Cu nanoparticles in Al(2)O(3) by pulsed laser deposition. Serna R; Suárez-García A; Afonso CN; Babonneau D Nanotechnology; 2006 Sep; 17(18):4588-93. PubMed ID: 21727581 [TBL] [Abstract][Full Text] [Related]
13. Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser. Miller J; Yu PK; Cringle SJ; Yu DY Appl Opt; 2007 Jan; 46(3):413-20. PubMed ID: 17228389 [TBL] [Abstract][Full Text] [Related]
14. A simple strategy for enhanced production of nanoparticles by laser ablation in liquids. Monsa Y; Gal G; Lerner N; Bar I Nanotechnology; 2020 Mar; 31(23):235601. PubMed ID: 32084660 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of laser produced plasma from foam targets for future nanolithography devices and X-ray sources. Wu Y; Jain G; Sizyuk T; Wang X; Hassanein A Sci Rep; 2021 Jul; 11(1):13677. PubMed ID: 34211072 [TBL] [Abstract][Full Text] [Related]
16. Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for port-wine stains. Yang MU; Yaroslavsky AN; Farinelli WA; Flotte TJ; Rius-Diaz F; Tsao SS; Anderson RR J Am Acad Dermatol; 2005 Mar; 52(3 Pt 1):480-90. PubMed ID: 15761427 [TBL] [Abstract][Full Text] [Related]
17. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses. Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676 [TBL] [Abstract][Full Text] [Related]
18. Laser Acceleration of Highly Energetic Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense Plasma and Ultrathin Foil. Ma WJ; Kim IJ; Yu JQ; Choi IW; Singh PK; Lee HW; Sung JH; Lee SK; Lin C; Liao Q; Zhu JG; Lu HY; Liu B; Wang HY; Xu RF; He XT; Chen JE; Zepf M; Schreiber J; Yan XQ; Nam CH Phys Rev Lett; 2019 Jan; 122(1):014803. PubMed ID: 31012707 [TBL] [Abstract][Full Text] [Related]
19. The DCU laser ion source. Yeates P; Costello JT; Kennedy ET Rev Sci Instrum; 2010 Apr; 81(4):043305. PubMed ID: 20441334 [TBL] [Abstract][Full Text] [Related]
20. Stable generation of high-order harmonics of femtosecond laser radiation from laser produced plasma plumes at 1 kHz pulse repetition rate. Hutchison C; Ganeev RA; Witting T; Frank F; Okell WA; Tisch JW; Marangos JP Opt Lett; 2012 Jun; 37(11):2064-6. PubMed ID: 22660122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]