These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11089672)
1. Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Gianinazzi-Pearson V; Arnould C; Oufattole M; Arango M; Gianinazzi S Planta; 2000 Oct; 211(5):609-13. PubMed ID: 11089672 [TBL] [Abstract][Full Text] [Related]
2. Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H(+)-ATPase, and one of which is induced by mechanical stress. Oufattole M; Arango M; Boutry M Planta; 2000 Apr; 210(5):715-22. PubMed ID: 10805442 [TBL] [Abstract][Full Text] [Related]
3. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of a translational regulation. Michelet B; Lukaszewicz M; Dupriez V; Boutry M Plant Cell; 1994 Oct; 6(10):1375-89. PubMed ID: 7994172 [TBL] [Abstract][Full Text] [Related]
4. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme. Moriau L; Michelet B; Bogaerts P; Lambert L; Michel A; Oufattole M; Boutry M Plant J; 1999 Jul; 19(1):31-41. PubMed ID: 10417724 [TBL] [Abstract][Full Text] [Related]
5. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. Bobik K; Duby G; Nizet Y; Vandermeeren C; Stiernet P; Kanczewska J; Boutry M Plant J; 2010 Apr; 62(2):291-301. PubMed ID: 20128881 [TBL] [Abstract][Full Text] [Related]
6. The two major types of plant plasma membrane H+-ATPases show different enzymatic properties and confer differential pH sensitivity of yeast growth. Luo H; Morsomme P; Boutry M Plant Physiol; 1999 Feb; 119(2):627-34. PubMed ID: 9952459 [TBL] [Abstract][Full Text] [Related]
7. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species. Liu J; Liu J; Chen A; Ji M; Chen J; Yang X; Gu M; Qu H; Xu G Mycorrhiza; 2016 Oct; 26(7):645-56. PubMed ID: 27103309 [TBL] [Abstract][Full Text] [Related]
8. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Vieweg MF; Frühling M; Quandt HJ; Heim U; Bäumlein H; Pühler A; Küster H; Andreas MP Mol Plant Microbe Interact; 2004 Jan; 17(1):62-9. PubMed ID: 14714869 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Kobae Y; Hata S Plant Cell Physiol; 2010 Mar; 51(3):341-53. PubMed ID: 20097910 [TBL] [Abstract][Full Text] [Related]
11. Reorganization of tobacco root plastids during arbuscule development. Fester T; Strack D; Hause B Planta; 2001 Oct; 213(6):864-8. PubMed ID: 11722122 [TBL] [Abstract][Full Text] [Related]
12. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Li HY; Yang GD; Shu HR; Yang YT; Ye BX; Nishida I; Zheng CC Plant Cell Physiol; 2006 Jan; 47(1):154-63. PubMed ID: 16326755 [TBL] [Abstract][Full Text] [Related]
13. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Kobae Y; Tamura Y; Takai S; Banba M; Hata S Plant Cell Physiol; 2010 Sep; 51(9):1411-5. PubMed ID: 20627949 [TBL] [Abstract][Full Text] [Related]
14. Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Guttenberger M Planta; 2000 Aug; 211(3):299-304. PubMed ID: 10987547 [TBL] [Abstract][Full Text] [Related]
15. Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Fester T; Schmidt D; Lohse S; Walter MH; Giuliano G; Bramley PM; Fraser PD; Hause B; Strack D Planta; 2002 Nov; 216(1):148-54. PubMed ID: 12430024 [TBL] [Abstract][Full Text] [Related]
16. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Gaude N; Bortfeld S; Duensing N; Lohse M; Krajinski F Plant J; 2012 Feb; 69(3):510-28. PubMed ID: 21978245 [TBL] [Abstract][Full Text] [Related]
17. Suppression of tobacco basic chitinase gene expression in response to colonization by the arbuscular mycorrhizal fungus Glomus intraradices. David R; Itzhaki H; Ginzberg I; Gafni Y; Galili G; Kapulnik Y Mol Plant Microbe Interact; 1998 Jun; 11(6):489-97. PubMed ID: 9612947 [TBL] [Abstract][Full Text] [Related]
18. Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Journet EP; El-Gachtouli N; Vernoud V; de Billy F; Pichon M; Dedieu A; Arnould C; Morandi D; Barker DG; Gianinazzi-Pearson V Mol Plant Microbe Interact; 2001 Jun; 14(6):737-48. PubMed ID: 11386369 [TBL] [Abstract][Full Text] [Related]
19. A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Li C; Zhou J; Wang X; Liao H Plant Cell Environ; 2019 Jun; 42(6):2015-2027. PubMed ID: 30730567 [TBL] [Abstract][Full Text] [Related]
20. Earliest colonization events of Rhizophagus irregularis in rice roots occur preferentially in previously uncolonized cells. Kobae Y; Fujiwara T Plant Cell Physiol; 2014 Aug; 55(8):1497-510. PubMed ID: 24899551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]