These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11089681)

  • 1. Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures.
    Fry SC; Willis SC; Paterson AE
    Planta; 2000 Oct; 211(5):679-92. PubMed ID: 11089681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of diferulate formation in dicotyledonous and gramineous cell-suspension cultures.
    Lindsay SE; Fry SC
    Planta; 2008 Jan; 227(2):439-52. PubMed ID: 17938956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for intra- and extra-protoplasmic feruloylation and cross-linking in wheat seedling roots.
    Mastrangelo LI; Lenucci MS; Piro G; Dalessandro G
    Planta; 2009 Jan; 229(2):343-55. PubMed ID: 18974998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor.
    Encina A; Fry SC
    Planta; 2005 Dec; 223(1):77-89. PubMed ID: 16049678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling.
    Kerr EM; Fry SC
    Planta; 2004 May; 219(1):73-83. PubMed ID: 14872243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bonds.
    Burr SJ; Fry SC
    Plant J; 2009 May; 58(4):554-67. PubMed ID: 19154199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity.
    de Castro M; Miller JG; Acebes JL; Encina A; García-Angulo P; Fry SC
    J Integr Plant Biol; 2015 Apr; 57(4):373-87. PubMed ID: 25611087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase.
    Burr SJ; Fry SC
    Mol Plant; 2009 Sep; 2(5):883-92. PubMed ID: 19825665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxaziclomefone, a new herbicide, inhibits wall expansion in maize cell-cultures without affecting polysaccharide biosynthesis, xyloglucan transglycosylation, peroxidase action or apoplastic ascorbate oxidation.
    O'Looney N; Fry SC
    Ann Bot; 2005 Nov; 96(6):1097-107. PubMed ID: 16144873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-formed xyloglucans and xylans increase in molecular weight in three distinct compartments of a maize cell-suspension culture.
    Kerr EM; Fry SC
    Planta; 2003 Jun; 217(2):327-39. PubMed ID: 12684788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking of maize walls by ferulate dimerization and incorporation into lignin.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2000 Dec; 48(12):6106-13. PubMed ID: 11312783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular feruloylation of arabinoxylan in wheat: evidence for feruloyl-glucose as precursor.
    Obel N; Porchia AC; Scheller HV
    Planta; 2003 Feb; 216(4):620-9. PubMed ID: 12569404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.
    Mélida H; Largo-Gosens A; Novo-Uzal E; Santiago R; Pomar F; García P; García-Angulo P; Acebes JL; Álvarez J; Encina A
    J Integr Plant Biol; 2015 Apr; 57(4):357-72. PubMed ID: 25735403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of gibberellin-induced elongation growth of rice by feruloyl oligosaccharides.
    Ishii T; Nishijima T
    Plant Cell Physiol; 1995 Dec; 36(8):1447-51. PubMed ID: 8589928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon.
    Buanafina MM; Fescemyer HW; Sharma M; Shearer EA
    Planta; 2016 Mar; 243(3):659-74. PubMed ID: 26612070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2002 Oct; 50(21):6008-16. PubMed ID: 12358473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cinnamic acid derivatives associated with the habituation of maize cells to dichlobenil.
    Mélida H; Jesús Álvarez ; Acebes JL; Encina A; Fry SC
    Mol Plant; 2011 Sep; 4(5):869-78. PubMed ID: 21571813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability.
    Barros-Rios J; Malvar RA; Jung HJ; Bunzel M; Santiago R
    Phytochemistry; 2012 Nov; 83():43-50. PubMed ID: 22938993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderate ferulate and diferulate levels do not impede maize cell wall degradation by human intestinal microbiota.
    Funk C; Braune A; Grabber JH; Steinhart H; Bunzel M
    J Agric Food Chem; 2007 Mar; 55(6):2418-23. PubMed ID: 17319685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of syringyl-rich lignins in maize as influenced by feruloylated xylans and p-coumaroylated monolignols.
    Grabber JH; Lu F
    Planta; 2007 Aug; 226(3):741-51. PubMed ID: 17457604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.