BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 11090562)

  • 1. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight.
    LeBlanc A; Lin C; Shackelford L; Sinitsyn V; Evans H; Belichenko O; Schenkman B; Kozlovskaya I; Oganov V; Bakulin A; Hedrick T; Feeback D
    J Appl Physiol (1985); 2000 Dec; 89(6):2158-64. PubMed ID: 11090562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function.
    Sibonga JD; Evans HJ; Sung HG; Spector ER; Lang TF; Oganov VS; Bakulin AV; Shackelford LC; LeBlanc AD
    Bone; 2007 Dec; 41(6):973-8. PubMed ID: 17931994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry.
    Smith SM; Heer MA; Shackelford LC; Sibonga JD; Ploutz-Snyder L; Zwart SR
    J Bone Miner Res; 2012 Sep; 27(9):1896-906. PubMed ID: 22549960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional muscle loss after short duration spaceflight.
    LeBlanc A; Rowe R; Schneider V; Evans H; Hedrick T
    Aviat Space Environ Med; 1995 Dec; 66(12):1151-4. PubMed ID: 8747608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-flight and postflight changes in skeletal muscles of SLS-1 and SLS-2 spaceflown rats.
    Riley DA; Ellis S; Slocum GR; Sedlak FR; Bain JL; Krippendorf BB; Lehman CT; Macias MY; Thompson JL; Vijayan K; De Bruin JA
    J Appl Physiol (1985); 1996 Jul; 81(1):133-44. PubMed ID: 8828655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight.
    Edgerton VR; Zhou MY; Ohira Y; Klitgaard H; Jiang B; Bell G; Harris B; Saltin B; Gollnick PD; Roy RR
    J Appl Physiol (1985); 1995 May; 78(5):1733-9. PubMed ID: 7649906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of body fluid compartments during short-term spaceflight.
    Leach CS; Alfrey CP; Suki WN; Leonard JI; Rambaut PC; Inners LD; Smith SM; Lane HW; Krauhs JM
    J Appl Physiol (1985); 1996 Jul; 81(1):105-16. PubMed ID: 8828652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of spaceflight on human protein metabolism.
    Stein TP; Leskiw MJ; Schluter MD
    Am J Physiol; 1993 May; 264(5 Pt 1):E824-8. PubMed ID: 8498504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise in space: human skeletal muscle after 6 months aboard the International Space Station.
    Trappe S; Costill D; Gallagher P; Creer A; Peters JR; Evans H; Riley DA; Fitts RH
    J Appl Physiol (1985); 2009 Apr; 106(4):1159-68. PubMed ID: 19150852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T2 vertebral bone marrow changes after space flight.
    LeBlanc A; Lin C; Evans H; Shackelford L; Martin C; Hedrick T
    Magn Reson Med; 1999 Mar; 41(3):495-8. PubMed ID: 10204872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of spaceflight on bone mineralization in the rhesus monkey.
    Zerath E; Novikov V; Leblanc A; Bakulin A; Oganov V; Grynpas M
    J Appl Physiol (1985); 1996 Jul; 81(1):194-200. PubMed ID: 8828665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthostatic intolerance after spaceflight.
    Buckey JC; Lane LD; Levine BD; Watenpaugh DE; Wright SJ; Moore WE; Gaffney FA; Blomqvist CG
    J Appl Physiol (1985); 1996 Jul; 81(1):7-18. PubMed ID: 8828642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity.
    Convertino VA; Doerr DF; Mathes KL; Stein SL; Buchanan P
    Aviat Space Environ Med; 1989 Jul; 60(7):653-8. PubMed ID: 2764848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station].
    Oganov VS; Grigor'ev AI; Voronin LI; Rakhmanov AS; Bakulin AV; Schneider VS; LeBlanc AD
    Aviakosm Ekolog Med; 1992; 26(5-6):20-4. PubMed ID: 1307030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diet and nitrogen metabolism during spaceflight on the shuttle.
    Stein TP; Leskiw MJ; Schluter MD
    J Appl Physiol (1985); 1996 Jul; 81(1):82-97. PubMed ID: 8828650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.
    Gopalakrishnan R; Genc KO; Rice AJ; Lee SM; Evans HJ; Maender CC; Ilaslan H; Cavanagh PR
    Aviat Space Environ Med; 2010 Feb; 81(2):91-102. PubMed ID: 20131648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune changes during short-duration missions.
    Taylor GR
    J Leukoc Biol; 1993 Sep; 54(3):202-8. PubMed ID: 8371049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future human bone research in space.
    LeBlanc A; Shackelford L; Schneider V
    Bone; 1998 May; 22(5 Suppl):113S-116S. PubMed ID: 9600765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats.
    Tischler ME; Henriksen EJ; Munoz KA; Stump CS; Woodman CR; Kirby CR
    J Appl Physiol (1985); 1993 May; 74(5):2161-5. PubMed ID: 8335544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The risk of renal stone formation during and after long duration space flight.
    Whitson PA; Pietrzyk RA; Morukov BV; Sams CF
    Nephron; 2001 Nov; 89(3):264-70. PubMed ID: 11598387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.