BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11090688)

  • 1. Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation.
    Pernas MA; López C; Pastrana L; Rúa ML
    J Biotechnol; 2001 Nov; 84(2):163-74. PubMed ID: 11090688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media.
    López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML
    Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes.
    Pernas MA; López C; Rúa ML; Hermoso J
    FEBS Lett; 2001 Jul; 501(1):87-91. PubMed ID: 11457462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational strategy for the production of new crude lipases from Candida rugosa.
    de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV
    Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of two distinct lipases from Candida cylindracea.
    Rúa L; Díaz-Mauriño T; Fernández VM; Otero C; Ballesteros A
    Biochim Biophys Acta; 1993 Feb; 1156(2):181-9. PubMed ID: 8427877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation.
    de Morais WG; Kamimura ES; Ribeiro EJ; Pessela BC; Cardoso VL; de Resende MM
    Protein Expr Purif; 2016 Jul; 123():26-34. PubMed ID: 27057641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of carboxylester lipase (CEL) isoenzymes from Candida rugosa and identification of the corresponding genes.
    Diczfalusy MA; Hellman U; Alexson SE
    Arch Biochem Biophys; 1997 Dec; 348(1):1-8. PubMed ID: 9390168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant Candida rugosa lipase 2 from Pichia pastoris: immobilization and use as biocatalyst in a stereoselective reaction.
    Benaiges MD; Alarcón M; Fuciños P; Ferrer P; Rua M; Valero F
    Biotechnol Prog; 2010; 26(5):1252-8. PubMed ID: 20945483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme.
    Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Aug; 54(16):5831-8. PubMed ID: 16881684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes.
    Brocca S; Secundo F; Ossola M; Alberghina L; Carrea G; Lotti M
    Protein Sci; 2003 Oct; 12(10):2312-9. PubMed ID: 14500889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters.
    Yen CC; Malmis CC; Lee GC; Lee LC; Shaw JF
    J Agric Food Chem; 2010 Oct; 58(20):10899-905. PubMed ID: 20873770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Candida rugosa lipases: an overview.
    Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR
    Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of novel long-chain acyl-CoA thioesterase/carboxylesterase isoenzymes from Candida rugosa.
    Diczfalusy MA; Alexson SE
    Arch Biochem Biophys; 1996 Oct; 334(1):104-12. PubMed ID: 8837745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel minor lipase from Rhizopus chinensis during solid-state fermentation: biochemical characterization and its esterification potential for ester synthesis.
    Sun SY; Xu Y; Wang D
    Bioresour Technol; 2009 May; 100(9):2607-12. PubMed ID: 19157870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production, purification and partial characterization of four lipases from a thermophile isolated from Deception Island.
    Muñoz PA; Correa-Llantén DN; Blamey JM
    Lipids; 2013 May; 48(5):527-33. PubMed ID: 23436021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica.
    Aloulou A; Rodriguez JA; Puccinelli D; Mouz N; Leclaire J; Leblond Y; Carrière F
    Biochim Biophys Acta; 2007 Feb; 1771(2):228-37. PubMed ID: 17270492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica.
    Salameh MA; Wiegel J
    Appl Environ Microbiol; 2007 Dec; 73(23):7725-31. PubMed ID: 17933930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Esterification synthesis of ethyl oleate in solvent-free system catalyzed by lipase membrane from fermentation broth.
    Li WN; Chen BQ; Tan TW
    Appl Biochem Biotechnol; 2011 Jan; 163(1):102-11. PubMed ID: 20661784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on a novel carbon source and cosolvent for lipase production by Candida rugosa.
    Wei D; Zhang LY; Song Q
    J Ind Microbiol Biotechnol; 2004 Mar; 31(3):133-6. PubMed ID: 15069604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine separation and characterization of Candida rugosa lipase isoenzymes.
    Xin JY; Xiao-Xue Hu YX; Cui JR; Li SB; Xia CG; Zhu LM
    J Basic Microbiol; 2002; 42(5):355-63. PubMed ID: 12362407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.