BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11090977)

  • 1. Fos activation and upregulation of nicotinamide adenine dinucleotide phosphate diaphorase in the rat pituitary by acute capsaicin injection.
    Okere CO; Higuchi T; Kaba H
    Neurosci Lett; 2000 Dec; 295(3):73-6. PubMed ID: 11090977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin.
    Okere CO; Kaba H; Higuchi T
    J Comp Neurol; 2000 Aug; 423(4):670-86. PubMed ID: 10880996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for nitric oxide in the median eminence and arcuate nucleus response to capsaicin treatment in rats.
    Okere CO; Kaba H; Higuchi T
    Neuroreport; 1999 Apr; 10(6):1209-13. PubMed ID: 10363926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of spinal nitric oxide synthase-dependent processes in the initiation of the micturition hyperreflexia associated with cyclophosphamide-induced cystitis.
    Lagos P; Ballejo G
    Neuroscience; 2004; 125(3):663-70. PubMed ID: 15099680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute capsaicin injection increases nicotinamide adenine dinucleotide phosphate diaphorase staining independent of Fos activation in the rat dorsolateral periaqueductal gray.
    Okere CO; Waterhouse BD
    Neurosci Lett; 2006 Sep; 404(3):288-93. PubMed ID: 16835009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucocorticoid effects on Fos immunoreactivity and NADPH-diaphorase histochemical staining following spinal cord injury.
    González S; Labombarda F; Gonzalez Deniselle MC; Saravia FE; Roig P; De Nicola AF
    Brain Res; 2001 Sep; 912(2):144-53. PubMed ID: 11532430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verifying of participation of nitric oxide in morphine place conditioning in the rat medial septum using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d).
    Karami M; Karimian Azimi M; Zarrindast MR; Khalaji Z
    Iran Biomed J; 2010 Oct; 14(4):150-7. PubMed ID: 21283257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of quinolinic acid-induced depletion of striatal NADPH diaphorase and enkephalinergic neurons by inhibition of nitric oxide synthase.
    Kalisch BE; Jhamandas K; Beninger RJ; Boegman RJ
    Brain Res; 1999 Jan; 817(1-2):151-62. PubMed ID: 9889356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nitric oxide synthase inhibition on quinolinic acid toxicity in the rat striatum.
    MacKenzie GM; Jenner P; Marsden CD
    Neuroscience; 1995 Jul; 67(2):357-71. PubMed ID: 7545792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II interacts with nitric oxide-cyclic GMP pathway in the central control of drinking behaviour: mapping with c-fos and NADPH-diaphorase.
    Zhu B; Herbert J
    Neuroscience; 1997 Jul; 79(2):543-53. PubMed ID: 9200737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation of nitric oxide synthase immunoreactivity and NADPH-diaphorase enzyme activity in rat pituitary.
    Wang H; Christian HC; Morris JF
    J Endocrinol; 1997 Sep; 154(3):R7-11. PubMed ID: 9379112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions.
    Echeverry MB; Guimarães FS; Del Bel EA
    Neuroscience; 2004; 125(4):981-93. PubMed ID: 15120858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perivascular localization of nitric oxide synthase in the rat adenohypophysis: potential implications for function and cell-cell interaction.
    Okere CO; Murata E; Higuchi T
    Brain Res; 1998 Feb; 784(1-2):337-40. PubMed ID: 9518679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-dependent heterogeneous populations of nitric oxide synthase neurons in the rat dorsal raphe nucleus.
    Okere CO; Waterhouse BD
    Brain Res; 2006 May; 1086(1):117-32. PubMed ID: 16616732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parturition upregulates nitric oxide synthase activity in the rat anterior pituitary gland.
    Okere CO; Murata E; Murata T; Takahashi S; Okutani F; Higuchi T
    Neuroreport; 1997 Mar; 8(4):817-21. PubMed ID: 9141045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for bidirectional changes in nitric oxide synthase activity in the rat striatum after excitotoxically (quinolinic acid) induced degeneration.
    Schmidt W; Wolf G; Calka J; Schmidt HH
    Neuroscience; 1995 Jul; 67(2):345-56. PubMed ID: 7545791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockers of nitric oxide synthase inhibit stress activation of c-fos expression in neurons of the hypothalamic paraventricular nucleus in the rat.
    Amir S; Rackover M; Funk D
    Neuroscience; 1997 Apr; 77(3):623-7. PubMed ID: 9070740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cerebral nitrergic pathway modulates endotoxin-induced changes in gastric motility.
    Quintana E; García-Zaragozá E; Martínez-Cuesta MA; Calatayud S; Esplugues JV; Barrachina MD
    Br J Pharmacol; 2001 Sep; 134(2):325-32. PubMed ID: 11564650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocytic Fos expression in the rat posterior pituitary following LPS administration.
    Matsunaga W; Osawa S; Miyata S; Kiyohara T
    Brain Res; 2001 Apr; 898(2):215-23. PubMed ID: 11306007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide synthase-containing neurons in sensory ganglia of the rat are susceptible to capsaicin-induced cytotoxicity.
    Ren K; Ruda MA
    Neuroscience; 1995 Mar; 65(2):505-11. PubMed ID: 7539899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.