BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11091173)

  • 1. Membranes for endotoxin removal from dialysate: considerations on feasibility of commercial ceramic membranes.
    Bender H; Pfläzel A; Saunders N; Czermak P; Catapano G; Vienken J
    Artif Organs; 2000 Oct; 24(10):826-9. PubMed ID: 11091173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New generation ceramic membranes have the potential of removing endotoxins from dialysis water and dialysate.
    Czermak P; Ebrahimi M; Catapano G
    Int J Artif Organs; 2005 Jul; 28(7):694-700. PubMed ID: 16049903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafiltration and endotoxin removal from dialysis fluids.
    Di Felice A; Cappelli G; Facchini F; Tetta C; Cornia F; Aimo G; Lusvarghi E
    Kidney Int Suppl; 1993 Jun; 41():S201-4. PubMed ID: 8320921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-permeable membranes and hypersensitivity-like reactions: role of dialysis fluid contamination.
    Bigazzi R; Atti M; Baldari G
    Blood Purif; 1990; 8(4):190-8. PubMed ID: 2085427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dialysate contamination and back filtration may limit the use of high-flux dialysis membranes.
    Baurmeister U; Travers M; Vienken J; Harding G; Million C; Klein E; Pass T; Wright R
    ASAIO Trans; 1989; 35(3):519-22. PubMed ID: 2597523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro assessment of mixed matrix hemodialysis membrane for achieving endotoxin-free dialysate combined with high removal of uremic toxins from human plasma.
    Geremia I; Bansal R; Stamatialis D
    Acta Biomater; 2019 May; 90():100-111. PubMed ID: 30953798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up.
    Schepers E; Glorieux G; Eloot S; Hulko M; Boschetti-de-Fierro A; Beck W; Krause B; Van Biesen W
    BMC Nephrol; 2018 Jan; 19(1):1. PubMed ID: 29304774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria- and endotoxin-free dialysis fluid for use in chronic hemodialysis.
    Bambauer R; Walther J; Meyer S; Ost S; Schauer M; Jung WK; Göhl H; Vienken J
    Artif Organs; 1994 Mar; 18(3):188-92. PubMed ID: 8185483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysis fluids filtered to remove bacteria and endotoxin.
    Pegues DA; Oettinger CW; Bland LA; Oliver JC; Arduino MJ; Aguero SM; McAllister SK; Gordon SM; Favero MS; Jarvis WR
    J Am Soc Nephrol; 1992 Oct; 3(4):1002-7. PubMed ID: 1450362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the DialGuard device for endotoxin removal in hemodialysis.
    Szathmary S; Hegyi E; Amoureux MC; Rajapakse N; Chicorka L; Szalai G; Reszegi K; Derbyshire Z; Paluh J; Dodson B; Grandics P
    Blood Purif; 2004; 22(5):409-15. PubMed ID: 15316195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential transfer of endotoxin across high-flux polysulfone membranes.
    Bommer J; Becker KP; Urbaschek R
    J Am Soc Nephrol; 1996 Jun; 7(6):883-8. PubMed ID: 8793797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria and endotoxin removal from bicarbonate dialysis fluids for use in conventional, high-efficiency, and high-flux hemodialysis.
    Oliver JC; Bland LA; Oettinger CW; Arduino MJ; Garrard M; Pegues DA; McAllister S; Moone T; Aguero S; Favero MS
    Artif Organs; 1992 Apr; 16(2):141-5. PubMed ID: 10078235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrogenic reactions in patients receiving conventional, high-efficiency, or high-flux hemodialysis treatments with bicarbonate dialysate containing high concentrations of bacteria and endotoxin.
    Gordon SM; Oettinger CW; Bland LA; Oliver JC; Arduino MJ; Aguero SM; McAllister SK; Favero MS; Jarvis WR
    J Am Soc Nephrol; 1992 Mar; 2(9):1436-44. PubMed ID: 1627766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro assessment of dialysis membrane as an endotoxin transfer barrier: geometry, morphology, and permeability.
    Henrie M; Ford C; Andersen M; Stroup E; Diaz-Buxo J; Madsen B; Britt D; Ho CH
    Artif Organs; 2008 Sep; 32(9):701-10. PubMed ID: 18684209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dialysate and biocompatibility in hemodialysis].
    Berland Y
    Nephrologie; 1998; 19(6):329-34. PubMed ID: 9836194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The level of endotoxins in hemodialysis water and dialysate].
    Skarupskiene I; Bumblyte IA; Kuzminskis V
    Medicina (Kaunas); 2007; 43 Suppl 1():81-4. PubMed ID: 17551282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In search of sterile, endotoxin-free dialysate.
    Gault MH; Duffett AL; Murphy JF; Purchase LH
    ASAIO J; 1992; 38(3):M431-5. PubMed ID: 1457896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-flux dialyzers, backfiltration, and dialysis fluid quality.
    Schiffl H
    Semin Dial; 2011; 24(1):1-4. PubMed ID: 21299628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filtration of dialysate using an on-line dialysate filter.
    Frinak S; Polaschegg HD; Levin NW; Pohlod DJ; Dumler F; Saravolatz LD
    Int J Artif Organs; 1991 Nov; 14(11):691-7. PubMed ID: 1757155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafiltration of dialysis fluid for hemodialysis.
    Bambauer R; Jutzler GA; Schmidt R; Weber U; el-Saadi R; Oest A; Jung WK
    ASAIO Trans; 1989; 35(3):516-9. PubMed ID: 2597522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.