BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11092560)

  • 1. Thermal dependence of multidrug-resistant-modulator efficiency: a study in anionic liposomes.
    Castaing M; Loiseau A; Dani M
    J Pharm Pharmacol; 2000 Oct; 52(10):1171-8. PubMed ID: 11092560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing multidrug-resistance modulators circumventing the reverse pH gradient in tumours.
    Castaing M; Loiseau A; Dani M
    J Pharm Pharmacol; 2001 Jul; 53(7):1021-8. PubMed ID: 11480537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane permeation by multidrug-resistance-modulators and non-modulators: effects of hydrophobicity and electric charge.
    Castaing M; Brouant P; Loiseau A; Santelli-Rouvier C; Santelli M; Alibert-Franco S; Mahamoud A; Barbe J
    J Pharm Pharmacol; 2000 Mar; 52(3):289-96. PubMed ID: 10757416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cholesterol on dye leakage induced by multidrug-resistance modulators from anionic liposomes.
    Castaing M; Loiseau A; Djoudi L
    Eur J Pharm Sci; 2003 Jan; 18(1):81-8. PubMed ID: 12554076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between verapamil and neutral and acidic liposomes: effects of the ionic strength.
    Castaing M; Loiseau A; Mulliert G
    Biochim Biophys Acta; 2003 Apr; 1611(1-2):107-14. PubMed ID: 12659951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multidrug resistance modulator interactions with neutral and anionic liposomes: membrane binding affinity and membrane perturbing activity.
    Castaing M; Loiseau A; Mulliert G
    J Pharm Pharmacol; 2005 May; 57(5):547-54. PubMed ID: 15901343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy between verapamil and other multidrug -resistance modulators in model membranes.
    Castaing M; Loiseau A; Cornish-Bowden A
    J Biosci; 2007 Jun; 32(4):737-46. PubMed ID: 17762146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of P-glycoprotein-mediated multidrug resistance by acceleration of passive drug permeation across the plasma membrane.
    Regev R; Katzir H; Yeheskely-Hayon D; Eytan GD
    FEBS J; 2007 Dec; 274(23):6204-14. PubMed ID: 17986257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cationic lipid stearylamine reduces the permeability of the cationic drugs verapamil and prochlorperazine to lipid bilayers: implications for drug delivery.
    Webb MS; Wheeler JJ; Bally MB; Mayer LD
    Biochim Biophys Acta; 1995 Sep; 1238(2):147-55. PubMed ID: 7548129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations.
    Troganis AN; Sicilia E; Barbarossou K; Gerothanassis IP; Russo N
    J Phys Chem A; 2005 Dec; 109(51):11878-84. PubMed ID: 16366639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopy study of dimerization of fluorone dyes in AOT reverse micelles.
    Volkova O; Kuleshova A; Saletsky A
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120640. PubMed ID: 34838425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability.
    Drori S; Eytan GD; Assaraf YG
    Eur J Biochem; 1995 Mar; 228(3):1020-9. PubMed ID: 7737146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of octyl-beta-thioglucopyranoside with lipid membranes.
    Wenk MR; Seelig J
    Biophys J; 1997 Nov; 73(5):2565-74. PubMed ID: 9370450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of liposomal anticancer agents to determine the roles of drug pharmacodistribution and P-glycoprotein (PGP) blockade in overcoming multidrug resistance (MDR).
    Krishna R; Mayer LD
    Anticancer Res; 1999; 19(4B):2885-91. PubMed ID: 10652569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells.
    Bhowmick S; Swanlund DJ; Bischof JC
    J Biomech Eng; 2000 Feb; 122(1):51-9. PubMed ID: 10790830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detergent-like action of the antibiotic peptide surfactin on lipid membranes.
    Heerklotz H; Seelig J
    Biophys J; 2001 Sep; 81(3):1547-54. PubMed ID: 11509367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of membrane ion conductance analyzed by using the amphiphilic anion 5/6-carboxyfluorescein.
    Bramhall J; Hofmann J; DeGuzman R; Montestruque S; Schell R
    Biochemistry; 1987 Oct; 26(20):6330-40. PubMed ID: 3427008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermokinetic comparison of trypan blue decolorization by free laccase and fungal biomass.
    Razak NN; Annuar MS
    Appl Biochem Biotechnol; 2014 Mar; 172(6):2932-44. PubMed ID: 24464534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.