BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 11092846)

  • 1. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum.
    Molenaar D; van der Rest ME; Drysch A; Yücel R
    J Bacteriol; 2000 Dec; 182(24):6884-91. PubMed ID: 11092846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli.
    van der Rest ME; Frank C; Molenaar D
    J Bacteriol; 2000 Dec; 182(24):6892-9. PubMed ID: 11092847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum.
    Molenaar D; van der Rest ME; Petrović S
    Eur J Biochem; 1998 Jun; 254(2):395-403. PubMed ID: 9660197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.
    Kather B; Stingl K; van der Rest ME; Altendorf K; Molenaar D
    J Bacteriol; 2000 Jun; 182(11):3204-9. PubMed ID: 10809701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa.
    Kretzschmar U; Rückert A; Jeoung JH; Görisch H
    Microbiology (Reading); 2002 Dec; 148(Pt 12):3839-3847. PubMed ID: 12480887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering functional redundancy and energetics of malate oxidation in mycobacteria.
    Harold LK; Jinich A; Hards K; Cordeiro A; Keighley LM; Cross A; McNeil MB; Rhee K; Cook GM
    J Biol Chem; 2022 May; 298(5):101859. PubMed ID: 35337802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of NADH Dehydrogenase and Alternative Two-Enzyme Systems for Growth of
    Maeda T; Koch-Koerfges A; Bott M
    Front Bioeng Biotechnol; 2020; 8():621213. PubMed ID: 33585420
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Ito T; Kajita S; Fujii M; Shinohara Y
    Microbiol Spectr; 2023 Jun; 11(3):e0016823. PubMed ID: 37036365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of malate:quinone oxidoreductase increases L-lysine production by Corynebacterium glutamicum.
    Mitsuhashi S; Hayashi M; Ohnishi J; Ikeda M
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2803-6. PubMed ID: 17090916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies.
    Li L; Wada M; Yokota A
    Proteomics; 2007 Sep; 7(18):3348-57. PubMed ID: 17849411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.
    Takahashi-Íñiguez T; Barrios-Hernández J; Rodríguez-Maldonado M; Flores ME
    Arch Microbiol; 2018 Nov; 200(9):1279-1286. PubMed ID: 29936645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.
    Deutch CE
    Antonie Van Leeuwenhoek; 2013 Nov; 104(5):645-55. PubMed ID: 23881243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH dehydrogenase of Corynebacterium glutamicum. Purification of an NADH dehydrogenase II homolog able to oxidize NADPH.
    Matsushita K; Otofuji A; Iwahashi M; Toyama H; Adachi O
    FEMS Microbiol Lett; 2001 Nov; 204(2):271-6. PubMed ID: 11731134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.
    Tsuge Y; Uematsu K; Yamamoto S; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5573-82. PubMed ID: 25808520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of malate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum.
    Yennaco LJ; Hu Y; Holden JF
    Extremophiles; 2007 Sep; 11(5):741-6. PubMed ID: 17487443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The respiratory chain of Corynebacterium glutamicum.
    Bott M; Niebisch A
    J Biotechnol; 2003 Sep; 104(1-3):129-53. PubMed ID: 12948635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
    Netzer R; Krause M; Rittmann D; Peters-Wendisch PG; Eggeling L; Wendisch VF; Sahm H
    Arch Microbiol; 2004 Nov; 182(5):354-63. PubMed ID: 15375646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malate dehydrogenase mutants in Escherichia coli K-12.
    Courtright JB; Henning U
    J Bacteriol; 1970 Jun; 102(3):722-8. PubMed ID: 4914076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes.
    Dymov SI; Meek DJ; Steven B; Driscoll BT
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1318-27. PubMed ID: 15597737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.