These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 11092905)
1. Proton-symport of L-valine in plasma membrane vesicles isolated from leaves of the wild-type and the Val(r)-2 mutant of Nicotiana tabacum L. Borstlap AC; Schuurmans JA Plant Cell Physiol; 2000 Nov; 41(11):1210-7. PubMed ID: 11092905 [TBL] [Abstract][Full Text] [Related]
2. Sucrose transport into plasma membrane vesicles from tobacco leaves by H+ symport or counter exchange does not display a linear component. Borstlap AC; Schuurmans JA J Membr Biol; 2004 Mar; 198(1):31-42. PubMed ID: 15209095 [TBL] [Abstract][Full Text] [Related]
3. Transport of amino acids (L-valine, L-lysine, L-glutamic acid) and sucrose into plasma membrane vesicles isolated from cotyledons of developing pea seeds. de Jong A; Borstlap AC J Exp Bot; 2000 Oct; 51(351):1663-70. PubMed ID: 11053455 [TBL] [Abstract][Full Text] [Related]
4. A plasma membrane-enriched fraction isolated from the coats of developing pea seeds contains H(+)-symporters for amino acids and sucrose. de Jong A; Borstlap AC J Exp Bot; 2000 Oct; 51(351):1671-7. PubMed ID: 11053456 [TBL] [Abstract][Full Text] [Related]
5. Effect of cutting on solute uptake by plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves. Sakr S; Lemoine R; Gaillard C; Delrot S Plant Physiol; 1993 Sep; 103(1):49-58. PubMed ID: 8208858 [TBL] [Abstract][Full Text] [Related]
6. DeltapH-Dependent Amino Acid Transport into Plasma Membrane Vesicles Isolated from Sugar Beet Leaves: I. Evidence for Carrier-Mediated, Electrogenic Flux through Multiple Transport Systems. Li ZC; Bush DR Plant Physiol; 1990 Sep; 94(1):268-77. PubMed ID: 16667696 [TBL] [Abstract][Full Text] [Related]
7. Surcose transport in isolated plasma-membrane vesicles from sugar beet (Beta vulgaris L.) Evidence for an electrogenic sucrose-proton symport. Buckhout TJ Planta; 1989 Jun; 178(3):393-9. PubMed ID: 24212906 [TBL] [Abstract][Full Text] [Related]
8. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Toussaint F; Pierman B; Bertin A; Lévy D; Boutry M Biochem J; 2017 May; 474(10):1689-1703. PubMed ID: 28298475 [TBL] [Abstract][Full Text] [Related]
9. Transport of leucine, isoleucine and valine by luminal membrane vesicles from rabbit proximal tubule. Jørgensen KE; Kragh-Hansen U; Sheikh MI J Physiol; 1990 Mar; 422():41-54. PubMed ID: 2352186 [TBL] [Abstract][Full Text] [Related]
10. Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants. Henry LT; Raper CD J Plant Nutr; 1989; 12(7):811-26. PubMed ID: 11537085 [TBL] [Abstract][Full Text] [Related]
11. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
12. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Dutilleul C; Lelarge C; Prioul JL; De Paepe R; Foyer CH; Noctor G Plant Physiol; 2005 Sep; 139(1):64-78. PubMed ID: 16126851 [TBL] [Abstract][Full Text] [Related]
13. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Matt P; Schurr U; Klein D; Krapp A; Stitt M Planta; 1998 Dec; 207(1):27-41. PubMed ID: 9951717 [TBL] [Abstract][Full Text] [Related]
14. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus. Heyne RI; de Vrij W; Crielaard W; Konings WN J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936 [TBL] [Abstract][Full Text] [Related]
15. Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C Lyu H; Lazár D J Theor Biol; 2017 Jan; 413():11-23. PubMed ID: 27816676 [TBL] [Abstract][Full Text] [Related]
16. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. Priault P; Tcherkez G; Cornic G; De Paepe R; Naik R; Ghashghaie J; Streb P J Exp Bot; 2006; 57(12):3195-207. PubMed ID: 16945981 [TBL] [Abstract][Full Text] [Related]
17. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells. Wycliffe P; Sitbon F; Wernersson J; Ezcurra I; Ellerström M; Rask L Plant J; 2005 Oct; 44(1):1-15. PubMed ID: 16167891 [TBL] [Abstract][Full Text] [Related]
18. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Häusler RE; Schlieben NH; Nicolay P; Fischer K; Fischer KL; Flügge UI Planta; 2000 Feb; 210(3):371-82. PubMed ID: 10750894 [TBL] [Abstract][Full Text] [Related]
20. The role of plastocyanin in the adjustment of the photosynthetic electron transport to the carbon metabolism in tobacco. Schöttler MA; Kirchhoff H; Weis E Plant Physiol; 2004 Dec; 136(4):4265-74. PubMed ID: 15563617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]