BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11092963)

  • 1. Phosphorylation of lactate dehydrogenase by protein kinases.
    Yasykova MY; Petukhov SP; Muronetz VI
    Biochemistry (Mosc); 2000 Oct; 65(10):1192-6. PubMed ID: 11092963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bovine brain calmodulin-dependent protein kinase II: molecular mechanisms of autophosphorylation.
    Zhang GY; Wang JH; Sharma RK
    Biochem Biophys Res Commun; 1993 Mar; 191(2):669-74. PubMed ID: 8384850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phosphorylation of glyceraldehyde-3-phosphate dehydrogenase].
    Sergienko EA; Ermakova AA; Muronets VI; Nagradova NK
    Biokhimiia; 1993 Apr; 58(4):636-47. PubMed ID: 8389608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine-glutamate interaction in rat striatal slices: changes of CCDPK II, PKA, and LDH activity by receptor-mediated mechanisms.
    Tang FM; Sun YF; Wang R; Ding YM; Zhang GY; Jin GZ
    Acta Pharmacol Sin; 2000 Feb; 21(2):145-50. PubMed ID: 11263261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophosphorylation of lactate dehydrogenase.
    Yasykova MV; Ashmarina LI; Muronetz VI; Nagradova NK
    Biochem Int; 1987 May; 14(5):933-8. PubMed ID: 3454647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanism for the inactivation of Ca2+/calmodulin-dependent protein kinase II during prolonged seizure activity and its consequence after the recovery from seizure activity in rats in vivo.
    Yamagata Y; Imoto K; Obata K
    Neuroscience; 2006 Jul; 140(3):981-92. PubMed ID: 16632208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation.
    Witczak CA; Fujii N; Hirshman MF; Goodyear LJ
    Diabetes; 2007 May; 56(5):1403-9. PubMed ID: 17287469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase.
    Schumacher AM; Schavocky JP; Velentza AV; Mirzoeva S; Watterson DM
    Biochemistry; 2004 Jun; 43(25):8116-24. PubMed ID: 15209507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase.
    Watanabe Y; Song T; Sugimoto K; Horii M; Araki N; Tokumitsu H; Tezuka T; Yamamoto T; Tokuda M
    Biochem J; 2003 Jun; 372(Pt 2):465-71. PubMed ID: 12630910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The clash in titin.
    Means AR
    Nature; 1998 Oct; 395(6705):846-7. PubMed ID: 9804415
    [No Abstract]   [Full Text] [Related]  

  • 12. [Change in the activity of various protein kinases in rat brain synaptosome fractions during the in vitro effect of estradiol].
    Gevorkian ES
    Vopr Med Khim; 1991; 37(2):53-4. PubMed ID: 1654674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a phosphorylation site on skeletal muscle myosin light chain kinase that becomes phosphorylated during muscle contraction.
    Haydon CE; Watt PW; Morrice N; Knebel A; Gaestel M; Cohen P
    Arch Biochem Biophys; 2002 Jan; 397(2):224-31. PubMed ID: 11795875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle.
    Rose AJ; Hargreaves M
    J Physiol; 2003 Nov; 553(Pt 1):303-9. PubMed ID: 14565989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between mammalian glyceraldehyde-3-phosphate dehydrogenase and L-lactate dehydrogenase from heart and muscle.
    Svedruzić ZM; Spivey HO
    Proteins; 2006 May; 63(3):501-11. PubMed ID: 16444750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes.
    Guo T; Zhang T; Mestril R; Bers DM
    Circ Res; 2006 Aug; 99(4):398-406. PubMed ID: 16840718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of Ca2+/calmodulin-dependent protein kinase type ii and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (ampa) receptor in response to a threonine-devoid diet.
    Sharp JW; Ross CM; Koehnle TJ; Gietzen DW
    Neuroscience; 2004; 126(4):1053-62. PubMed ID: 15207338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of JAK2 protein expression by chronic, pulsatile GH administration in vivo: a possible mechanism for ligand enhancement of signal transduction.
    Zhou Y; Wang X; Hadley J; Corey SJ; Vasilatos-Younken R
    Gen Comp Endocrinol; 2005 Nov; 144(2):128-39. PubMed ID: 15993410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycogen synthase binds to sarcoplasmic reticulum and is phosphorylated by CaMKII in fast-twitch skeletal muscle.
    Sacchetto R; Bovo E; Salviati L; Damiani E; Margreth A
    Arch Biochem Biophys; 2007 Mar; 459(1):115-21. PubMed ID: 17178096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.