These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 11093676)
1. Oxidation of elemental sulfur by bacteria and fungi in soil. Czaban J; Kobus J Acta Microbiol Pol; 2000; 49(2):135-47. PubMed ID: 11093676 [TBL] [Abstract][Full Text] [Related]
2. [The antibiotic-aided separation of fungal and bacterial substrate-induced respiration in various soil ecosystems]. Sus'ian EA; Anan'eva ND; Blagodatskaia EV Mikrobiologiia; 2005; 74(3):394-400. PubMed ID: 16119854 [TBL] [Abstract][Full Text] [Related]
3. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. Pietikäinen J; Pettersson M; Bååth E FEMS Microbiol Ecol; 2005 Mar; 52(1):49-58. PubMed ID: 16329892 [TBL] [Abstract][Full Text] [Related]
4. Field released transgenic papaya effect on soil microbial communities and enzyme activities. Wei XD; Zou HL; Chu LM; Liao B; Ye CM; Lan CY J Environ Sci (China); 2006; 18(4):734-40. PubMed ID: 17078553 [TBL] [Abstract][Full Text] [Related]
5. Rate of elemental sulfur oxidation in some soils of Egypt as affected by the salinity level, moisture, texture, temperature and inoculation. Fawzi Abed MA Beitr Trop Landwirtsch Veterinarmed; 1976; 14(2):179-85. PubMed ID: 11771 [TBL] [Abstract][Full Text] [Related]
6. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275 [TBL] [Abstract][Full Text] [Related]
7. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy. Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208 [TBL] [Abstract][Full Text] [Related]
8. Respiratory activity of the soil from several habitats in the Botanical Garden in Poznań. Golebiowska J; Pedziwilk Z Acta Microbiol Pol A; 1976; 8(1):43-50. PubMed ID: 937087 [TBL] [Abstract][Full Text] [Related]
9. Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Baptist F; Zinger L; Clement JC; Gallet C; Guillemin R; Martins JM; Sage L; Shahnavaz B; Choler P; Geremia R Environ Microbiol; 2008 Mar; 10(3):799-809. PubMed ID: 18237312 [TBL] [Abstract][Full Text] [Related]
10. Fungal manganese oxidation in a reduced soil. Thompson IA; Huber DM; Guest CA; Schulze DG Environ Microbiol; 2005 Sep; 7(9):1480-7. PubMed ID: 16104870 [TBL] [Abstract][Full Text] [Related]
11. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Nemergut DR; Townsend AR; Sattin SR; Freeman KR; Fierer N; Neff JC; Bowman WD; Schadt CW; Weintraub MN; Schmidt SK Environ Microbiol; 2008 Nov; 10(11):3093-105. PubMed ID: 18764871 [TBL] [Abstract][Full Text] [Related]
12. Sulfate reduction in poorly-drained soils as influenced by organic matter and soil texture. Abed MA Beitr Trop Landwirtsch Veterinarmed; 1976; 14(1):89-93. PubMed ID: 985306 [TBL] [Abstract][Full Text] [Related]
13. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Anandham R; Indiragandhi P; Madhaiyan M; Ryu KY; Jee HJ; Sa TM Res Microbiol; 2008; 159(9-10):579-89. PubMed ID: 18832027 [TBL] [Abstract][Full Text] [Related]
14. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Luo W; D'Angelo EM; Coyne MS Chemosphere; 2008 Jan; 70(3):364-73. PubMed ID: 17870145 [TBL] [Abstract][Full Text] [Related]
15. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
16. Soil microbial activities and carbon and nitrogen fixation. Chen G; Zhu H; Zhang Y Res Microbiol; 2003; 154(6):393-8. PubMed ID: 12892845 [TBL] [Abstract][Full Text] [Related]
17. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. Yergeau E; Bokhorst S; Huiskes AH; Boschker HT; Aerts R; Kowalchuk GA FEMS Microbiol Ecol; 2007 Feb; 59(2):436-51. PubMed ID: 16978243 [TBL] [Abstract][Full Text] [Related]
18. [Radiometric study of the decarboxylating activity of desert soil microflora]. Imsenecki AA; Murzakov BG Mikrobiologiia; 1975; 44(3):408-13. PubMed ID: 1160646 [TBL] [Abstract][Full Text] [Related]
19. Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil. Ding L; Wu J; Xiao H; Zhou P; Syers JK J Sci Food Agric; 2012 Mar; 92(5):1073-9. PubMed ID: 22102211 [TBL] [Abstract][Full Text] [Related]
20. Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. García de la Fuente R; Carrión C; Botella S; Fornes F; Noguera V; Abad M Bioresour Technol; 2007 Dec; 98(18):3561-9. PubMed ID: 17196816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]