These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11093712)

  • 1. c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions.
    Rampp M; Buttersack C; Lüdemann HD
    Carbohydr Res; 2000 Oct; 328(4):561-72. PubMed ID: 11093712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of the rotational mobility of the sugar and water molecules in concentrated aqueous trehalose and sucrose solutions.
    Karger N; Lüdemann HD
    Z Naturforsch C J Biosci; 1991; 46(3-4):313-7. PubMed ID: 1652254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the interaction of proteins and disaccharides-The effect of pH and concentration.
    Reichert D; Gröger S; Hackel C
    Biopolymers; 2017 Feb; 107(2):39-45. PubMed ID: 27677543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations.
    Lerbret A; Bordat P; Affouard F; Descamps M; Migliardo F
    J Phys Chem B; 2005 Jun; 109(21):11046-57. PubMed ID: 16852346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-viscosity decoupling in supercooled aqueous trehalose solutions.
    Corti HR; Frank GA; Marconi MC
    J Phys Chem B; 2008 Oct; 112(41):12899-906. PubMed ID: 18811196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy.
    Engelsen SB; Monteiro C; Hervé de Penhoat C; Pérez S
    Biophys Chem; 2001 Nov; 93(2-3):103-27. PubMed ID: 11804720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR study on the interaction of trehalose with lactose and its effect on the hydrogen bond interaction in lactose.
    Vilén EM; Sandström C
    Molecules; 2013 Aug; 18(8):9735-54. PubMed ID: 23948714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration and aggregation in mono- and disaccharide aqueous solutions by gigahertz-to-terahertz light scattering and molecular dynamics simulations.
    Lupi L; Comez L; Paolantoni M; Perticaroli S; Sassi P; Morresi A; Ladanyi BM; Fioretto D
    J Phys Chem B; 2012 Dec; 116(51):14760-7. PubMed ID: 23205713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature.
    Golic M; Walsh K; Lawson P
    Appl Spectrosc; 2003 Feb; 57(2):139-45. PubMed ID: 14610949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration and temperature dependence of the viscosity of polyol aqueous solutions.
    Longinotti MP; Trejo González JA; Corti HR
    Cryobiology; 2014 Aug; 69(1):84-90. PubMed ID: 24882608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air-liquid partition coefficients of aroma volatiles in frozen sugar solutions.
    Klooster JR; Druaux C; Vreeker R
    J Agric Food Chem; 2005 Jun; 53(11):4503-9. PubMed ID: 15913317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational diffusion coefficients of volatile compounds in various aqueous solutions at low and subzero temperatures.
    Covarrubias-Cervantes M; Champion D; Debeaufort F; Voilley A
    J Agric Food Chem; 2005 Aug; 53(17):6771-6. PubMed ID: 16104798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of carbohydrate-protein matrices for nutrient delivery.
    Zhou Y; Roos YH
    J Food Sci; 2011 May; 76(4):E368-76. PubMed ID: 22417357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sugar molecules on the viscosity of high concentration monoclonal antibody solutions.
    He F; Woods CE; Litowski JR; Roschen LA; Gadgil HS; Razinkov VI; Kerwin BA
    Pharm Res; 2011 Jul; 28(7):1552-60. PubMed ID: 21573867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration behaviour of some mono-, di-, and tri-saccharides in aqueous sodium gluconate solutions at (288.15, 298.15, 308.15 and 318.15)K: volumetric and rheological approach.
    Banipal PK; Singh V; Aggarwal N; Banipal TS
    Food Chem; 2015 Feb; 168():142-50. PubMed ID: 25172693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Comparison between Sucrose and Trehalose in Aqueous Solution.
    Olsson C; Swenson J
    J Phys Chem B; 2020 Apr; 124(15):3074-3082. PubMed ID: 32223195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin.
    Cottone G; Giuffrida S; Ciccotti G; Cordone L
    Proteins; 2005 May; 59(2):291-302. PubMed ID: 15723350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing simulated and experimental translation and rotation constants: range of validity for viscosity scaling.
    Venable RM; Hatcher E; Guvench O; Mackerell AD; Pastor RW
    J Phys Chem B; 2010 Oct; 114(39):12501-7. PubMed ID: 20831149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.
    Longinotti MP; Corti HR
    J Phys Chem B; 2009 Apr; 113(16):5500-7. PubMed ID: 19326883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.