These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11093833)

  • 1. Split gene origin and periodic introns.
    Elder D
    J Theor Biol; 2000 Dec; 207(4):455-72. PubMed ID: 11093833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel intron site in the triosephosphate isomerase gene from the mosquito Culex tarsalis.
    Tittiger C; Whyard S; Walker VK
    Nature; 1993 Feb; 361(6411):470-2. PubMed ID: 8429888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAPDH enhances group II intron splicing in vitro.
    Böck-Taferner P; Wank H
    Biol Chem; 2004 Jul; 385(7):615-21. PubMed ID: 15318810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Five identical intron positions in ancient duplicated genes of eubacterial origin.
    Kersanach R; Brinkmann H; Liaud MF; Zhang DX; Martin W; Cerff R
    Nature; 1994 Jan; 367(6461):387-9. PubMed ID: 8114942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates.
    Takishita K; Patron NJ; Ishida K; Maruyama T; Keeling PJ
    J Eukaryot Microbiol; 2005; 52(4):343-8. PubMed ID: 16014012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a reconciliation of the introns early or late views: triosephosphate isomerase genes from insects.
    Tyshenko MG; Walker VK
    Biochim Biophys Acta; 1997 Aug; 1353(2):131-6. PubMed ID: 9294007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory.
    Logsdon JM; Tyshenko MG; Dixon C; D-Jafari J; Walker VK; Palmer JD
    Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8507-11. PubMed ID: 7667320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics simulations of glycolytic enzyme subsets with F-actin.
    Lowe SL; Adrian C; Ouporov IV; Waingeh VF; Thomasson KA
    Biopolymers; 2003 Dec; 70(4):456-70. PubMed ID: 14648757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tigA gene is a transcriptional fusion of glycolytic genes encoding triose-phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase in oomycota.
    Unkles SE; Logsdon JM; Robison K; Kinghorn JR; Duncan JM
    J Bacteriol; 1997 Nov; 179(21):6816-23. PubMed ID: 9352934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the exon theory of genes: the evidence from protein structure.
    Stoltzfus A; Spencer DF; Zuker M; Logsdon JM; Doolittle WF
    Science; 1994 Jul; 265(5169):202-7. PubMed ID: 8023140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intron-dependent evolution of the nucleotide-binding domains within alcohol dehydrogenase and related enzymes.
    Duester G; Jörnvall H; Hatfield GW
    Nucleic Acids Res; 1986 Mar; 14(5):1931-41. PubMed ID: 2938077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize.
    Quigley F; Martin WF; Cerff R
    Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2672-6. PubMed ID: 3357887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway.
    Liaud MF; Lichtlé C; Apt K; Martin W; Cerff R
    Mol Biol Evol; 2000 Feb; 17(2):213-23. PubMed ID: 10677844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservative evolution in duplicated genes of the primate Class I ADH cluster.
    Oota H; Dunn CW; Speed WC; Pakstis AJ; Palmatier MA; Kidd JR; Kidd KK
    Gene; 2007 May; 392(1-2):64-76. PubMed ID: 17204375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution.
    Cañestro C; Albalat R; Hjelmqvist L; Godoy L; Jörnvall H; Gonzàlez-Duarte R
    J Mol Evol; 2002 Jan; 54(1):81-9. PubMed ID: 11734901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete genomic sequence of the carp fast skeletal myosin heavy chain gene.
    Muramatsu-Uno M; Kikuchi K; Suetake H; Ikeda D; Watabe S
    Gene; 2005 Apr; 349():143-51. PubMed ID: 15777658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against intron-dependent evolution of the rod.
    Strehler EE; Strehler-Page MA; Perriard JC; Periasamy M; Nadal-Ginard B
    J Mol Biol; 1986 Aug; 190(3):291-317. PubMed ID: 3783701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors.
    Fridmanis D; Fredriksson R; Kapa I; Schiöth HB; Klovins J
    Mol Phylogenet Evol; 2007 Jun; 43(3):864-80. PubMed ID: 17188520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the ancient nature of introns.
    Gilbert W; Glynias M
    Gene; 1993 Dec; 135(1-2):137-44. PubMed ID: 8276250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of sarcomeric myosin heavy chain genes: evidence from fish.
    McGuigan K; Phillips PC; Postlethwait JH
    Mol Biol Evol; 2004 Jun; 21(6):1042-56. PubMed ID: 15014174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.