These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11094043)

  • 1. Physiological induction of a beta-adrenergic receptor kinase inhibitor transgene preserves ss-adrenergic responsiveness in pressure-overload cardiac hypertrophy.
    Manning BS; Shotwell K; Mao L; Rockman HA; Koch WJ
    Circulation; 2000 Nov; 102(22):2751-7. PubMed ID: 11094043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo inhibition of elevated myocardial beta-adrenergic receptor kinase activity in hybrid transgenic mice restores normal beta-adrenergic signaling and function.
    Akhter SA; Eckhart AD; Rockman HA; Shotwell K; Lefkowitz RJ; Koch WJ
    Circulation; 1999 Aug; 100(6):648-53. PubMed ID: 10441103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase.
    Choi DJ; Koch WJ; Hunter JJ; Rockman HA
    J Biol Chem; 1997 Jul; 272(27):17223-9. PubMed ID: 9202046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress.
    Esposito G; Rapacciuolo A; Naga Prasad SV; Takaoka H; Thomas SA; Koch WJ; Rockman HA
    Circulation; 2002 Jan; 105(1):85-92. PubMed ID: 11772881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of myocardial betaARK1 expression in catecholamine-induced cardiac hypertrophy in transgenic mice overexpressing alpha1B-adrenergic receptors.
    Iaccarino G; Keys JR; Rapacciuolo A; Shotwell KF; Lefkowitz RJ; Rockman HA; Koch WJ
    J Am Coll Cardiol; 2001 Aug; 38(2):534-40. PubMed ID: 11499749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-adrenergic stimulation induces cardiac ankyrin repeat protein expression: involvement of protein kinase A and calmodulin-dependent kinase.
    Zolk O; Marx M; Jäckel E; El-Armouche A; Eschenhagen T
    Cardiovasc Res; 2003 Sep; 59(3):563-72. PubMed ID: 14499857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adverse effects of constitutively active alpha(1B)-adrenergic receptors after pressure overload in mouse hearts.
    Wang BH; Du XJ; Autelitano DJ; Milano CA; Woodcock EA
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1079-86. PubMed ID: 10993770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiomyocyte-restricted inhibition of G protein-coupled receptor kinase-3 attenuates cardiac dysfunction after chronic pressure overload.
    von Lueder TG; Gravning J; How OJ; Vinge LE; Ahmed MS; Krobert KA; Levy FO; Larsen TS; Smiseth OA; Aasum E; Attramadal H
    Am J Physiol Heart Circ Physiol; 2012 Jul; 303(1):H66-74. PubMed ID: 22542621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium.
    Major JL; Salih M; Tuana BS
    J Mol Cell Cardiol; 2015 Jul; 84():179-90. PubMed ID: 25944088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor.
    Koch WJ; Rockman HA; Samama P; Hamilton RA; Bond RA; Milano CA; Lefkowitz RJ
    Science; 1995 Jun; 268(5215):1350-3. PubMed ID: 7761854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta(2)-adrenergic receptor overexpression driven by alpha-MHC promoter is downregulated in hypertrophied and failing myocardium.
    Sheridan DJ; Autelitano DJ; Wang B; Percy E; Woodcock EA; Du XJ
    Cardiovasc Res; 2000 Jul; 47(1):133-41. PubMed ID: 10869539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure.
    Tachibana H; Naga Prasad SV; Lefkowitz RJ; Koch WJ; Rockman HA
    Circulation; 2005 Feb; 111(5):591-7. PubMed ID: 15668342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function.
    Gresham KS; Stelzer JE
    J Physiol; 2016 Feb; 594(3):669-86. PubMed ID: 26635197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice.
    Engelhardt S; Hein L; Keller U; Klämbt K; Lohse MJ
    Circ Res; 2002 Apr; 90(7):814-9. PubMed ID: 11964375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction.
    Perrino C; Naga Prasad SV; Mao L; Noma T; Yan Z; Kim HS; Smithies O; Rockman HA
    J Clin Invest; 2006 Jun; 116(6):1547-60. PubMed ID: 16741575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial beta-adrenergic receptor signaling in vivo: insights from transgenic mice.
    Rockman HA; Koch WJ; Milano CA; Lefkowitz RJ
    J Mol Med (Berl); 1996 Sep; 74(9):489-95. PubMed ID: 8892053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of betaARK1 restores impaired biochemical beta-adrenergic receptor responsiveness but does not rescue CREB(A133) induced cardiomyopathy.
    Eckhart AD; Fentzke RC; Lepore J; Lang R; Lin H; Lefkowitz RJ; Koch WJ; Leiden JM
    J Mol Cell Cardiol; 2002 Jun; 34(6):669-77. PubMed ID: 12054854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1).
    Rosenkranz S; Flesch M; Amann K; Haeuseler C; Kilter H; Seeland U; Schlüter KD; Böhm M
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1253-62. PubMed ID: 12181157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy.
    Lin F; Owens WA; Chen S; Stevens ME; Kesteven S; Arthur JF; Woodcock EA; Feneley MP; Graham RM
    Circ Res; 2001 Aug; 89(4):343-50. PubMed ID: 11509451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventricular dysfunction after cardioplegic arrest is improved after myocardial gene transfer of a beta-adrenergic receptor kinase inhibitor.
    Tevaearai HT; Eckhart AD; Shotwell KF; Wilson K; Koch WJ
    Circulation; 2001 Oct; 104(17):2069-74. PubMed ID: 11673348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.