These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 11094081)
1. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo. Takase Y; Takagi T; Komarnitsky PB; Buratowski S Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081 [TBL] [Abstract][Full Text] [Related]
2. An essential function of Saccharomyces cerevisiae RNA triphosphatase Cet1 is to stabilize RNA guanylyltransferase Ceg1 against thermal inactivation. Hausmann S; Ho CK; Schwer B; Shuman S J Biol Chem; 2001 Sep; 276(39):36116-24. PubMed ID: 11463793 [TBL] [Abstract][Full Text] [Related]
3. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Ho CK; Schwer B; Shuman S Mol Cell Biol; 1998 Sep; 18(9):5189-98. PubMed ID: 9710603 [TBL] [Abstract][Full Text] [Related]
4. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus. Gu M; Rajashankar KR; Lima CD Structure; 2010 Feb; 18(2):216-27. PubMed ID: 20159466 [TBL] [Abstract][Full Text] [Related]
5. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus. Lehman K; Schwer B; Ho CK; Rouzankina I; Shuman S J Biol Chem; 1999 Aug; 274(32):22668-78. PubMed ID: 10428848 [TBL] [Abstract][Full Text] [Related]
6. Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain. Cho EJ; Rodriguez CR; Takagi T; Buratowski S Genes Dev; 1998 Nov; 12(22):3482-7. PubMed ID: 9832501 [TBL] [Abstract][Full Text] [Related]
8. A Saccharomyces cerevisiae RNA 5'-triphosphatase related to mRNA capping enzyme. Rodriguez CR; Takagi T; Cho EJ; Buratowski S Nucleic Acids Res; 1999 May; 27(10):2181-8. PubMed ID: 10219091 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5'-triphosphatase, which is essential for cell viability. Tsukamoto T; Shibagaki Y; Imajoh-Ohmi S; Murakoshi T; Suzuki M; Nakamura A; Gotoh H; Mizumoto K Biochem Biophys Res Commun; 1997 Oct; 239(1):116-22. PubMed ID: 9345280 [TBL] [Abstract][Full Text] [Related]
10. Localization and in vitro mutagenesis of the active site in the Saccharomyces cerevisiae mRNA capping enzyme. Shibagaki Y; Gotoh H; Kato M; Mizumoto K J Biochem; 1995 Dec; 118(6):1303-9. PubMed ID: 8720151 [TBL] [Abstract][Full Text] [Related]
11. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. Ho CK; Sriskanda V; McCracken S; Bentley D; Schwer B; Shuman S J Biol Chem; 1998 Apr; 273(16):9577-85. PubMed ID: 9545288 [TBL] [Abstract][Full Text] [Related]
12. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. Ho CK; Martins A; Shuman S J Virol; 2000 Jun; 74(12):5486-94. PubMed ID: 10823853 [TBL] [Abstract][Full Text] [Related]
13. Importance of homodimerization for the in vivo function of yeast RNA triphosphatase. Lehman K; Ho CK; Shuman S J Biol Chem; 2001 May; 276(18):14996-5002. PubMed ID: 11279098 [TBL] [Abstract][Full Text] [Related]
14. An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase. Ho CK; Lehman K; Shuman S Nucleic Acids Res; 1999 Dec; 27(24):4671-8. PubMed ID: 10572165 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of the Candida albicans gene for mRNA 5'-triphosphatase: association of mRNA 5'-triphosphatase and mRNA 5'-guanylyltransferase activities is essential for the function of mRNA 5'-capping enzyme in vivo. Yamada-Okabe T; Mio T; Matsui M; Kashima Y; Arisawa M; Yamada-Okabe H FEBS Lett; 1998 Sep; 435(1):49-54. PubMed ID: 9755857 [TBL] [Abstract][Full Text] [Related]
16. Cap completion and C-terminal repeat domain kinase recruitment underlie the initiation-elongation transition of RNA polymerase II. Lidschreiber M; Leike K; Cramer P Mol Cell Biol; 2013 Oct; 33(19):3805-16. PubMed ID: 23878398 [TBL] [Abstract][Full Text] [Related]
17. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II. Bharati AP; Singh N; Kumar V; Kashif M; Singh AK; Singh P; Singh SK; Siddiqi MI; Tripathi T; Akhtar MS Sci Rep; 2016 Aug; 6():31294. PubMed ID: 27503426 [TBL] [Abstract][Full Text] [Related]
18. Isolation of temperature-sensitive mutants for mRNA capping enzyme in Saccharomyces cerevisiae. Yamagishi M; Mizumoto K; Ishihama A Mol Gen Genet; 1995 Nov; 249(2):147-54. PubMed ID: 7500935 [TBL] [Abstract][Full Text] [Related]
19. An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation. Sen R; Kaja A; Ferdoush J; Lahudkar S; Barman P; Bhaumik SR Mol Cell Biol; 2017 Jul; 37(13):. PubMed ID: 28396559 [TBL] [Abstract][Full Text] [Related]
20. Physical and functional interaction of the yeast corepressor Tup1 with mRNA 5'-triphosphatase. Mukai Y; Davie JK; Dent SY J Biol Chem; 2003 May; 278(21):18895-901. PubMed ID: 12637515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]