These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11094195)

  • 1. Simulation of Night Myopia in Pseudophakic Eyes.
    Aoshima S; Nagata T; Watanabe I
    Jpn J Ophthalmol; 2000 Nov; 44(6):691-692. PubMed ID: 11094195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Simulation of night myopia in pseudophakic eyes].
    Aoshima S; Nagata T; Watanabe I
    Nippon Ganka Gakkai Zasshi; 2000 May; 104(5):324-7. PubMed ID: 10835886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensation on polymethylmethacrylate, acrylic polymer, and silicone intraocular lenses after fluid-air exchange in rabbits.
    Hainsworth DP; Chen SN; Cox TA; Jaffe GJ
    Ophthalmology; 1996 Sep; 103(9):1410-8. PubMed ID: 8841299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraocular lens changes after short- and long-term exposure to intraocular silicone oil. An in vivo study.
    Khawly JA; Lambert RJ; Jaffe GJ
    Ophthalmology; 1998 Jul; 105(7):1227-33. PubMed ID: 9663226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Optical Performance in Eyes Implanted with Aspheric Foldable, Spherical Foldable, and Rigid PMMA IOLs.
    van Gaalen KW; Jansonius NM; Koopmans SA; Kooijman AC
    J Refract Surg; 2011 Feb; 27(2):98-105. PubMed ID: 20438019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term Posterior Capsule Opacification Reduction with Square-Edge Polymethylmethacrylate Intraocular Lens: Randomized Controlled Study.
    Haripriya A; Chang DF; Vijayakumar B; Niraj A; Shekhar M; Tanpreet S; Aravind S
    Ophthalmology; 2017 Mar; 124(3):295-302. PubMed ID: 28065436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
    Song H; Yuan X; Tang X
    BMC Ophthalmol; 2016 Jan; 16():9. PubMed ID: 26754111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excimer laser refractive surgery versus phakic intraocular lenses for the correction of moderate to high myopia.
    Barsam A; Allan BD
    Cochrane Database Syst Rev; 2010 May; (5):CD007679. PubMed ID: 20464757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of the Effect of Different Presbyopia-Correcting Intraocular Lenses With Eyes With Previous Laser Refractive Surgery.
    Camps VJ; Miret JJ; García C; Tolosa A; Piñero DP
    J Refract Surg; 2018 Apr; 34(4):222-227. PubMed ID: 29634836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postoperative refraction changes in phacoemulsification cataract surgery with implantation of different types of intraocular lens.
    Iwase T; Tanaka N; Sugiyama K
    Eur J Ophthalmol; 2008; 18(3):371-6. PubMed ID: 18465719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ophthalmic Nd:YAG laser energy on intraocular lenses after posterior capsulotomy in normal dog eyes.
    Beale AB; Salmon J; Michau TM; Gilger BC
    Vet Ophthalmol; 2006; 9(5):335-40. PubMed ID: 16939462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraocular lens implantation position sensitivity as a function of refractive error.
    Guo H; Goncharov A; Dainty C
    Ophthalmic Physiol Opt; 2012 Mar; 32(2):117-24. PubMed ID: 22150690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the outcome of implantation of hydrophobic acrylic versus silicone intraocular lenses in pediatric cataract: prospective randomized study.
    Bhusal S; Ram J; Sukhija J; Pandav SS; Kaushik S
    Can J Ophthalmol; 2010 Oct; 45(5):531-6. PubMed ID: 20847753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New intraocular lens for achromatizing the human eye.
    López-Gil N; Montés-Micó R
    J Cataract Refract Surg; 2007 Jul; 33(7):1296-302. PubMed ID: 17586390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes. Part 2: explanted intraocular lenses.
    Linnola RJ; Werner L; Pandey SK; Escobar-Gomez M; Znoiko SL; Apple DJ
    J Cataract Refract Surg; 2000 Dec; 26(12):1807-18. PubMed ID: 11134883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of glistenings in intraocular lenses with three different materials: 12-year follow-up.
    Rønbeck M; Behndig A; Taube M; Koivula A; Kugelberg M
    Acta Ophthalmol; 2013 Feb; 91(1):66-70. PubMed ID: 22035345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocular growth in newborn rabbit eyes implanted with a poly(methyl methacrylate) or silicone intraocular lens.
    Kugelberg U; Zetterström C; Lundgren B; Syrén-Nordqvist S
    J Cataract Refract Surg; 1997; 23 Suppl 1():629-34. PubMed ID: 9278816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the impact of light scatter from glistenings in pseudophakic eyes.
    DeHoog E; Doraiswamy A
    J Cataract Refract Surg; 2014 Jan; 40(1):95-103. PubMed ID: 24355722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation.
    Kershner RM
    J Cataract Refract Surg; 2003 Sep; 29(9):1684-94. PubMed ID: 14522286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.