BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11094818)

  • 1. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system.
    Torgan CE; Burge SS; Collinsworth AM; Truskey GA; Kraus WE
    Med Biol Eng Comput; 2000 Sep; 38(5):583-90. PubMed ID: 11094818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle satellite cells cultured in simulated microgravity.
    Molnar G; Schroedl NA; Gonda SR; Hartzell CR
    In Vitro Cell Dev Biol Anim; 1997 May; 33(5):386-91. PubMed ID: 9196898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spaceflight bioreactor studies of cells and tissues.
    Freed LE; Vunjak-Novakovic G
    Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor.
    Montufar-Solis D; Oakley CR; Jefferson Y; Duke PJ
    Adv Space Res; 2003; 32(8):1467-72. PubMed ID: 15000084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and ultrastructure of differentiating three-dimensional mammalian skeletal muscle in a collagen gel.
    Rhim C; Lowell DA; Reedy MC; Slentz DH; Zhang SJ; Kraus WE; Truskey GA
    Muscle Nerve; 2007 Jul; 36(1):71-80. PubMed ID: 17455272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor.
    Sytkowski AJ; Davis KL
    In Vitro Cell Dev Biol Anim; 2001 Feb; 37(2):79-83. PubMed ID: 11332741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chronic exposure to simulated microgravity on skeletal muscle cell proliferation and differentiation.
    Slentz DH; Truskey GA; Kraus WE
    In Vitro Cell Dev Biol Anim; 2001 Mar; 37(3):148-56. PubMed ID: 11370805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and differentiation of permanent and secondary mouse myogenic cell lines on microcarriers.
    Bardouille C; Lehmann J; Heimann P; Jockusch H
    Appl Microbiol Biotechnol; 2001 May; 55(5):556-62. PubMed ID: 11414320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering.
    Cazzaniga A; Ille F; Wuest S; Haack C; Koller A; Giger-Lange C; Zocchi M; Egli M; Castiglioni S; Maier JA
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.
    Ju ZH; Liu TQ; Ma XH; Cui ZF
    Biomed Environ Sci; 2006 Jun; 19(3):163-8. PubMed ID: 16944770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel.
    Gao H; Ayyaswamy PS; Ducheyne P
    Microgravity Sci Technol; 1997; 10(3):154-65. PubMed ID: 11543416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle Atrophy Marker Expression Differs between Rotary Cell Culture System and Animal Studies.
    Harding CP; Vargis E
    Biomed Res Int; 2019; 2019():2042808. PubMed ID: 30906768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced neurotrophin synthesis and molecular differentiation in non-transformed human retinal progenitor cells cultured in a rotating bioreactor.
    Kumar R; Dutt K
    Tissue Eng; 2006 Jan; 12(1):141-58. PubMed ID: 16499451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.
    Radtke AL; Herbst-Kralovetz MM
    J Vis Exp; 2012 Apr; (62):. PubMed ID: 22491366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids.
    Chromiak JA; Shansky J; Perrone C; Vandenburgh HH
    In Vitro Cell Dev Biol Anim; 1998 Oct; 34(9):694-703. PubMed ID: 9794221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IGF-I and vitamin C promote myogenic differentiation of mouse and human skeletal muscle cells at low temperatures.
    Shima A; Pham J; Blanco E; Barton ER; Sweeney HL; Matsuda R
    Exp Cell Res; 2011 Feb; 317(3):356-66. PubMed ID: 21070767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulated microgravity accelerates aging of human skeletal muscle myoblasts at the single cell level.
    Takahashi H; Nakamura A; Shimizu T
    Biochem Biophys Res Commun; 2021 Nov; 578():115-121. PubMed ID: 34562651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro.
    Aswad H; Jalabert A; Rome S
    BMC Biotechnol; 2016 Apr; 16():32. PubMed ID: 27038912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.