BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11095145)

  • 1. Biologically-based risk estimation for radiation-induced chronic myeloid leukemia.
    Radivoyevitch T; Hoel DG
    Radiat Environ Biophys; 2000 Sep; 39(3):153-9. PubMed ID: 11095145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically based risk estimation for radiation-induced CML. Inferences from BCR and ABL geometric distributions.
    Radivoyevitch T; Kozubek S; Sachs RK
    Radiat Environ Biophys; 2001 Mar; 40(1):1-9. PubMed ID: 11357705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the low-LET dose-response of BCR-ABL formation: predicting stem cell numbers from A-bomb data.
    Radivoyevitch T; Hoel DG
    Math Biosci; 1999; 162(1-2):85-101. PubMed ID: 10616282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leukemia patient-derived lymphoblastoid cell lines exhibit increased induction of leukemia-associated transcripts following high-dose irradiation.
    Spencer A; Granter N
    Exp Hematol; 1999 Sep; 27(9):1397-401. PubMed ID: 10480430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The risk of chronic myeloid leukemia: can the dose-response curve be U-shaped?
    Radivoyevitch T; Kozubek S; Sachs RK
    Radiat Res; 2002 Jan; 157(1):106-9. PubMed ID: 11754648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of chromosome aberration induction and chronic myeloid leukaemia incidence at low doses.
    Ballarini F; Ottolenghi A
    Radiat Environ Biophys; 2004 Sep; 43(3):165-71. PubMed ID: 15309385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the target stem-cell population size in chronic myeloid leukemogenesis.
    Radivoyevitch T; Ramsey MJ; Tucker JD
    Radiat Environ Biophys; 1999 Sep; 38(3):201-6. PubMed ID: 10525957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex differences in the incidence of chronic myeloid leukemia.
    Radivoyevitch T; Jankovic GM; Tiu RV; Saunthararajah Y; Jackson RC; Hlatky LR; Gale RP; Sachs RK
    Radiat Environ Biophys; 2014 Mar; 53(1):55-63. PubMed ID: 24337217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity.
    Li S; Ilaria RL; Million RP; Daley GQ; Van Etten RA
    J Exp Med; 1999 May; 189(9):1399-412. PubMed ID: 10224280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible dose-response models for Japanese atomic bomb survivor data: Bayesian estimation and prediction of cancer risk.
    Bennett J; Little MP; Richardson S
    Radiat Environ Biophys; 2004 Dec; 43(4):233-45. PubMed ID: 15565453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Gene rearrangement and radiation carcinogenesis].
    Akiyama M
    Rinsho Ketsueki; 1994 May; 35(5):454-60. PubMed ID: 8028192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data and implication based comparison of two chronic myeloid leukemia models.
    Everett RA; Zhao Y; Flores KB; Kuang Y
    Math Biosci Eng; 2013; 10(5-6):1501-18. PubMed ID: 24245631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies.
    Clarkson B; Strife A; Wisniewski D; Lambek CL; Liu C
    Leukemia; 2003 Jul; 17(7):1211-62. PubMed ID: 12835715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypersensitivity of bcr-abl-positive progenitors to hyperthermia in patients with chronic myeloid leukemia.
    Thijsen SF; van Oostveen JW; Schuurhuis GJ; Theijsmeijer AP; Oudejans CB; van Wijk IJ; Langenhuijsen MM; Ossenkoppele GJ
    Leukemia; 1997 Oct; 11(10):1762-8. PubMed ID: 9324298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lifetime Mortality Risk from Cancer and Circulatory Disease Predicted from the Japanese Atomic Bomb Survivor Life Span Study Data Taking Account of Dose Measurement Error.
    Little MP; Pawel D; Misumi M; Hamada N; Cullings HM; Wakeford R; Ozasa K
    Radiat Res; 2020 Sep; 194(3):259-276. PubMed ID: 32942303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive polymerase chain reaction as a method to detect the amplification of bcr-abl gene of chronic myeloid leukemia.
    Campanini F; Santucci MA; Pattachini L; Brusa G; Piccioli M; Barbieri E; Babini L; Tura S
    Haematologica; 2001 Feb; 86(2):167-73. PubMed ID: 11224486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of BCR/ABL gene expression on the proliferative rate of different subpopulations of haematopoietic cells in chronic myeloid leukaemia.
    Primo D; Flores J; Quijano S; Sanchez ML; Sarasquete ME; del Pino-Montes J; Gaarder PI; Gonzalez M; Orfao A
    Br J Haematol; 2006 Oct; 135(1):43-51. PubMed ID: 16939497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of the age incidence of chronic myeloid leukemia with an improved two-mutation mathematical model.
    Lecca P; Sorio C
    Integr Biol (Camb); 2016 Dec; 8(12):1261-1275. PubMed ID: 27801472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter perturbations in a post-treatment chronic myeloid leukemia model capture the essence of pre-diagnosis A-bomb survivor mysteries.
    Radivoyevitch T
    Radiat Environ Biophys; 2021 Mar; 60(1):41-47. PubMed ID: 33125593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic Myeloid Leukemia (CML) Mouse Model in Translational Research.
    Peng C; Li S
    Methods Mol Biol; 2016; 1438():225-43. PubMed ID: 27150093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.