These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11095148)

  • 21. A step-by-step simulation code for estimating yields of water radiolysis species based on electron track-structure mode in the PHITS code.
    Matsuya Y; Yoshii Y; Kusumoto T; Akamatsu K; Hirata Y; Sato T; Kai T
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38157551
    [No Abstract]   [Full Text] [Related]  

  • 22. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.
    Lazarakis P; Bug MU; Gargioni E; Guatelli S; Rabus H; Rosenfeld AB
    Phys Med Biol; 2012 Mar; 57(5):1231-50. PubMed ID: 22330641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical and biophysical properties of proton tracks of energies 1 keV to 300 MeV in water.
    Liamsuwan T; Uehara S; Emfietzoglou D; Nikjoo H
    Int J Radiat Biol; 2011 Feb; 87(2):141-60. PubMed ID: 21281230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NOREC, a Monte Carlo code for simulating electron tracks in liquid water.
    Semenenko VA; Turner JE; Borak TB
    Radiat Environ Biophys; 2003 Oct; 42(3):213-7. PubMed ID: 12920530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-energy electron penetration range in liquid water.
    Meesungnoen J; Jay-Gerin JP; Filali-Mouhim A; Mankhetkorn S
    Radiat Res; 2002 Nov; 158(5):657-60. PubMed ID: 12385644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of ion tracks in spatial and temporal proximity.
    Kreipl MS; Friedland W; Paretzke HG
    Radiat Environ Biophys; 2009 Nov; 48(4):349-59. PubMed ID: 19597739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.
    Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S
    Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermalization of subexcitation electrons in solid water.
    Goulet T; Jay-Gerin JP
    Radiat Res; 1989 Apr; 118(1):46-62. PubMed ID: 2704791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo simulation of the energy loss of low-energy electrons in liquid water.
    Emfietzoglou D; Karava K; Papamichael G; Moscovitch M
    Phys Med Biol; 2003 Aug; 48(15):2355-71. PubMed ID: 12953903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT.
    Gudowska I; Sobolevsky N; Andreo P; Belkić D; Brahme A
    Phys Med Biol; 2004 May; 49(10):1933-58. PubMed ID: 15214534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of various Monte Carlo track structure codes for energetic electrons in gaseous and liquid water.
    Nikjoo H; Uehara S
    Basic Life Sci; 1994; 63():167-84; discussion 184-5. PubMed ID: 7755542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison and assessment of electron cross sections for Monte Carlo track structure codes.
    Uehara S; Nikjoo H; Goodhead DT
    Radiat Res; 1999 Aug; 152(2):202-13. PubMed ID: 10409331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the Monte Carlo simulation of electron transport in the sub-1 keV energy range.
    Thomson RM; Kawrakow I
    Med Phys; 2011 Aug; 38(8):4531-4. PubMed ID: 21928623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation - Part II: sensitivity and uncertainty analysis.
    Lai Y; Tsai MY; Tian Z; Qin N; Yan C; Hung SH; Chi Y; Jia X
    Med Phys; 2020 Apr; 47(4):1971-1982. PubMed ID: 31975390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a Monte Carlo track structure code for low-energy protons in water.
    Uehara S; Toburen LH; Nikjoo H
    Int J Radiat Biol; 2001 Feb; 77(2):139-54. PubMed ID: 11236921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of incoming particle energy and cluster size on the G-value of hydrated electrons.
    Bui A; Bekerat H; Childress L; Sankey J; Seuntjens J; Enger SA
    Phys Med; 2023 Mar; 107():102540. PubMed ID: 36804695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU.
    Tian Z; Jiang SB; Jia X
    Phys Med Biol; 2017 Apr; 62(8):3081-3096. PubMed ID: 28323637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.