BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11095688)

  • 1. Transition characteristics and thermodynamic analysis of DNA duplex formation: a quantitative consideration for the extent of duplex association.
    Wu P; Sugimoto N
    Nucleic Acids Res; 2000 Dec; 28(23):4762-8. PubMed ID: 11095688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New thermodynamic characterization and transition mechanism of DNA duplex formation.
    Wu P; Sugimoto N
    Nucleic Acids Symp Ser; 2000; (44):15-6. PubMed ID: 12903246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs.
    Evertsz EM; Rippe K; Jovin TM
    Nucleic Acids Res; 1994 Aug; 22(16):3293-303. PubMed ID: 8078763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and hydration effects for the incorporation of a cationic 3-aminopropyl chain into DNA.
    Soto AM; Kankia BI; Dande P; Gold B; Marky LA
    Nucleic Acids Res; 2002 Jul; 30(14):3171-80. PubMed ID: 12136099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices.
    Holbrook JA; Capp MW; Saecker RM; Record MT
    Biochemistry; 1999 Jun; 38(26):8409-22. PubMed ID: 10387087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and premelting conformational changes of phased (dA)5 tracts.
    Chan SS; Breslauer KJ; Austin RH; Hogan ME
    Biochemistry; 1993 Nov; 32(44):11776-84. PubMed ID: 8218248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural competition involving G-quadruplex DNA and its complement.
    Li W; Miyoshi D; Nakano S; Sugimoto N
    Biochemistry; 2003 Oct; 42(40):11736-44. PubMed ID: 14529284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic study on the formation and stability of DNA duplex at transcription site for DNA binding proteins GCN4.
    Cao W; Lai L
    Biophys Chem; 1999 Aug; 80(3):217-26. PubMed ID: 10483711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic, spectroscopic, and equilibrium binding studies of DNA sequence context effects in four 40 base pair deoxyoligonucleotides.
    Vallone PM; Benight AS
    Biochemistry; 2000 Jul; 39(26):7835-46. PubMed ID: 10869190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolding thermodynamics of DNA intramolecular complexes involving joined triple- and double-helical motifs.
    Khutsishvili I; Johnson S; Lee HT; Marky LA
    Methods Enzymol; 2009; 466():477-502. PubMed ID: 21609873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contextual equilibrium effects in DNA molecules.
    Goobes R; Minsky A
    J Biol Chem; 2001 May; 276(19):16155-60. PubMed ID: 11279103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: implications for DNA hybridization.
    Einert TR; Orland H; Netz RR
    Eur Phys J E Soft Matter; 2011 Jun; 34(6):55. PubMed ID: 21626368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of adjacent triplex-duplex domainsin DNA.
    Nam KH; Abhiraman S; Wartell RM
    Nucleic Acids Res; 1999 Feb; 27(3):859-65. PubMed ID: 9889284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains.
    Durand M; Peloille S; Thuong NT; Maurizot JC
    Biochemistry; 1992 Sep; 31(38):9197-204. PubMed ID: 1390706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting behavior of a covalently closed, single-stranded, circular DNA.
    Erie DA; Jones RA; Olson WK; Sinha NK; Breslauer KJ
    Biochemistry; 1989 Jan; 28(1):268-73. PubMed ID: 2706250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.