BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11095700)

  • 1. Towards integrating vectors for gene therapy: expression of functional bacteriophage MuA and MuB proteins in mammalian cells.
    Schagen FH; Rademaker HJ; Cramer SJ; van Ormondt H; van der Eb AJ; van de Putte P; Hoeben RC
    Nucleic Acids Res; 2000 Dec; 28(23):E104. PubMed ID: 11095700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of a protein polymer: the assembly and disassembly pathways of the MuB transposition target complex.
    Greene EC; Mizuuchi K
    EMBO J; 2002 Mar; 21(6):1477-86. PubMed ID: 11889053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration.
    Ge J; Harshey RM
    J Mol Biol; 2008 Jul; 380(4):598-607. PubMed ID: 18556020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target immunity during Mu DNA transposition. Transpososome assembly and DNA looping enhance MuA-mediated disassembly of the MuB target complex.
    Greene EC; Mizuuchi K
    Mol Cell; 2002 Dec; 10(6):1367-78. PubMed ID: 12504012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MuA-mediated in vitro cloning of circular DNA: transpositional autointegration and the effect of MuB.
    Pulkkinen E; Haapa-Paananen S; Savilahti H
    Mol Genet Genomics; 2016 Jun; 291(3):1181-91. PubMed ID: 26847688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phage Mu-driven two-plasmid system for integration of recombinant DNA in the Methylophilus methylotrophus genome.
    Abalakina EG; Tokmakova IL; Gorshkova NV; Gak ER; Akhverdyan VZ; Mashko SV; Yomantas YA
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):191-200. PubMed ID: 18820908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism.
    Han YW; Mizuuchi K
    Mol Cell; 2010 Jul; 39(1):48-58. PubMed ID: 20603074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a Tc1-like transposon Sleeping Beauty-based gene transfer plasmid vector for generation of stable transgenic mammalian cell clones.
    Harris JW; Strong DD; Amoui M; Baylink DJ; Lau KH
    Anal Biochem; 2002 Nov; 310(1):15-26. PubMed ID: 12413468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway.
    Yamauchi M; Baker TA
    EMBO J; 1998 Sep; 17(18):5509-18. PubMed ID: 9736628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition.
    Jiang H; Yang JY; Harshey RM
    EMBO J; 1999 Jul; 18(13):3845-55. PubMed ID: 10393199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements.
    Ge J; Lou Z; Cui H; Shang L; Harshey RM
    J Biosci; 2011 Sep; 36(4):587-601. PubMed ID: 21857106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-globin matrix attachment region improves stable genomic expression of the Sleeping Beauty transposon.
    Sjeklocha L; Chen Y; Daly MC; Steer CJ; Kren BT
    J Cell Biochem; 2011 Sep; 112(9):2361-2375. PubMed ID: 21520245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel histone H1-based recombinant fusion peptide for targeted non-viral gene delivery.
    Soltani F; Sankian M; Hatefi A; Ramezani M
    Int J Pharm; 2013 Jan; 441(1-2):307-15. PubMed ID: 23200954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition.
    Mizuno N; Dramićanin M; Mizuuchi M; Adam J; Wang Y; Han YW; Yang W; Steven AC; Mizuuchi K; Ramón-Maiques S
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):E2441-50. PubMed ID: 23776210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An epitope tagged mammalian/prokaryotic expression vector with positive selection of cloned inserts.
    Schneider S; Georgiev O; Buchert M; Adams MT; Moelling K; Hovens CM
    Gene; 1997 Sep; 197(1-2):337-41. PubMed ID: 9332383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNase protection analysis of the stable synaptic complexes involved in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9031-5. PubMed ID: 1656459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.