These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11096087)

  • 1. Regulation of APG14 expression by the GATA-type transcription factor Gln3p.
    Chan TF; Bertram PG; Ai W; Zheng XF
    J Biol Chem; 2001 Mar; 276(9):6463-7. PubMed ID: 11096087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases.
    Bertram PG; Choi JH; Carvalho J; Ai W; Zeng C; Chan TF; Zheng XF
    J Biol Chem; 2000 Nov; 275(46):35727-33. PubMed ID: 10940301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation regulates the interaction between Gln3p and the nuclear import factor Srp1p.
    Carvalho J; Bertram PG; Wente SR; Zheng XF
    J Biol Chem; 2001 Jul; 276(27):25359-65. PubMed ID: 11331291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p.
    Cox KH; Rai R; Distler M; Daugherty JR; Coffman JA; Cooper TG
    J Biol Chem; 2000 Jun; 275(23):17611-8. PubMed ID: 10748041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia.
    van der Merwe GK; Cooper TG; van Vuuren HJ
    J Biol Chem; 2001 Aug; 276(31):28659-66. PubMed ID: 11356843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae.
    Coffman JA; Rai R; Cooper TG
    J Bacteriol; 1995 Dec; 177(23):6910-8. PubMed ID: 7592485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae.
    Kulkarni AA; Abul-Hamd AT; Rai R; El Berry H; Cooper TG
    J Biol Chem; 2001 Aug; 276(34):32136-44. PubMed ID: 11408486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to differentnitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p.
    Dubois E; Messenguy F
    Mol Gen Genet; 1997 Feb; 253(5):568-80. PubMed ID: 9065690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae.
    Blinder D; Coschigano PW; Magasanik B
    J Bacteriol; 1996 Aug; 178(15):4734-6. PubMed ID: 8755910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein.
    Carvalho J; Zheng XF
    J Biol Chem; 2003 May; 278(19):16878-86. PubMed ID: 12624103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids.
    Svetlov V; Cooper TG
    J Bacteriol; 1997 Dec; 179(24):7644-52. PubMed ID: 9401021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.
    Oliveira EM; Mansure JJ; Bon EP
    FEMS Yeast Res; 2005 Apr; 5(6-7):605-9. PubMed ID: 15780659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae.
    Cunningham TS; Andhare R; Cooper TG
    J Biol Chem; 2000 May; 275(19):14408-14. PubMed ID: 10799523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae.
    Cunningham TS; Svetlov VV; Rai R; Smart W; Cooper TG
    J Bacteriol; 1996 Jun; 178(12):3470-9. PubMed ID: 8655543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae.
    Coffman JA; Cooper TG
    J Bacteriol; 1997 Sep; 179(17):5609-13. PubMed ID: 9287023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae.
    Cunningham TS; Rai R; Cooper TG
    J Bacteriol; 2000 Dec; 182(23):6584-91. PubMed ID: 11073899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae.
    Coffman JA; Rai R; Loprete DM; Cunningham T; Svetlov V; Cooper TG
    J Bacteriol; 1997 Jun; 179(11):3416-29. PubMed ID: 9171383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae.
    André B; Talibi D; Soussi Boudekou S; Hein C; Vissers S; Coornaert D
    Nucleic Acids Res; 1995 Feb; 23(4):558-64. PubMed ID: 7899075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mks1p is required for negative regulation of retrograde gene expression in Saccharomyces cerevisiae but does not affect nitrogen catabolite repression-sensitive gene expression.
    Tate JJ; Cox KH; Rai R; Cooper TG
    J Biol Chem; 2002 Jun; 277(23):20477-82. PubMed ID: 11923302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.
    Kuruvilla FG; Shamji AF; Schreiber SL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7283-8. PubMed ID: 11416207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.