These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11096087)

  • 21. A family of ammonium transporters in Saccharomyces cerevisiae.
    Marini AM; Soussi-Boudekou S; Vissers S; Andre B
    Mol Cell Biol; 1997 Aug; 17(8):4282-93. PubMed ID: 9234685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes.
    Stanbrough M; Rowen DW; Magasanik B
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9450-4. PubMed ID: 7568152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; André B
    Mol Microbiol; 1999 Feb; 31(3):753-62. PubMed ID: 10048020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae.
    Oliveira EM; Martins AS; Carvajal E; Bon EP
    Yeast; 2003 Jan; 20(1):31-7. PubMed ID: 12489124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapamycin treatment results in GATA factor-independent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae.
    Saxena D; Kannan KB; Brandriss MC
    Eukaryot Cell; 2003 Jun; 2(3):552-9. PubMed ID: 12796300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae.
    Talibi D; Grenson M; André B
    Nucleic Acids Res; 1995 Feb; 23(4):550-7. PubMed ID: 7899074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae.
    Park HD; Scott S; Rai R; Dorrington R; Cooper TG
    J Bacteriol; 1999 Nov; 181(22):7052-64. PubMed ID: 10559172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae.
    Stanbrough M; Magasanik B
    J Bacteriol; 1996 Apr; 178(8):2465-8. PubMed ID: 8636059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae.
    Grundmann O; Mösch HU; Braus GH
    J Biol Chem; 2001 Jul; 276(28):25661-71. PubMed ID: 11356835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene.
    Blinder D; Magasanik B
    J Bacteriol; 1995 Jul; 177(14):4190-3. PubMed ID: 7608102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; Vissers S; Urrestarazu A; Jauniaux JC; André B
    Mol Microbiol; 1997 Mar; 23(6):1157-68. PubMed ID: 9106207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae.
    Coffman JA; Rai R; Cunningham T; Svetlov V; Cooper TG
    Mol Cell Biol; 1996 Mar; 16(3):847-58. PubMed ID: 8622686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins.
    Hardwick JS; Kuruvilla FG; Tong JK; Shamji AF; Schreiber SL
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14866-70. PubMed ID: 10611304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae.
    Cox KH; Tate JJ; Cooper TG
    J Biol Chem; 2002 Oct; 277(40):37559-66. PubMed ID: 12140287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots.
    Cooper TG
    FEMS Microbiol Rev; 2002 Aug; 26(3):223-38. PubMed ID: 12165425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae.
    Kametaka S; Okano T; Ohsumi M; Ohsumi Y
    J Biol Chem; 1998 Aug; 273(35):22284-91. PubMed ID: 9712845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression.
    Giannattasio S; Liu Z; Thornton J; Butow RA
    J Biol Chem; 2005 Dec; 280(52):42528-35. PubMed ID: 16253991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae.
    Scott S; Abul-Hamd AT; Cooper TG
    J Biol Chem; 2000 Oct; 275(40):30886-93. PubMed ID: 10906145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Saccharomyces cerevisiae GATA factors Dal80p and Deh1p can form homo- and heterodimeric complexes.
    Svetlov VV; Cooper TG
    J Bacteriol; 1998 Nov; 180(21):5682-8. PubMed ID: 9791119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.