BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 11096110)

  • 1. Alternative splicing of intron 3 of the serine/arginine-rich protein 9G8 gene. Identification of flanking exonic splicing enhancers and involvement of 9G8 as a trans-acting factor.
    Lejeune F; Cavaloc Y; Stevenin J
    J Biol Chem; 2001 Mar; 276(11):7850-8. PubMed ID: 11096110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins.
    Liu HX; Zhang M; Krainer AR
    Genes Dev; 1998 Jul; 12(13):1998-2012. PubMed ID: 9649504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiated evolutionary rates in alternative exons and the implications for splicing regulation.
    Plass M; Eyras E
    BMC Evol Biol; 2006 Jun; 6():50. PubMed ID: 16792801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific combinations of SR proteins associate with single pre-messenger RNAs in vivo and contribute different functions.
    Björk P; Jin S; Zhao J; Singh OP; Persson JO; Hellman U; Wieslander L
    J Cell Biol; 2009 Feb; 184(4):555-68. PubMed ID: 19221196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural disruption of exonic stem-loops immediately upstream of the intron regulates mammalian splicing.
    Saha K; England W; Fernandez MM; Biswas T; Spitale RC; Ghosh G
    Nucleic Acids Res; 2020 Jun; 48(11):6294-6309. PubMed ID: 32402057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin.
    Webb CJ; Romfo CM; van Heeckeren WJ; Wise JA
    Genes Dev; 2005 Jan; 19(2):242-54. PubMed ID: 15625190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-binding proteins and exonic splicing enhancers and silencers.
    Bakhtiar D; Vorechovsky I
    Metallomics; 2024 May; 16(5):. PubMed ID: 38692844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing.
    Voelker RB; Berglund JA
    Genome Res; 2007 Jul; 17(7):1023-33. PubMed ID: 17525134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain.
    Dembowski JA; An P; Scoulos-Hanson M; Yeo G; Han J; Fu XD; Grabowski PJ
    J Nucleic Acids; 2012; 2012():816237. PubMed ID: 23008758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IRFinder-S: a comprehensive suite to discover and explore intron retention.
    Lorenzi C; Barriere S; Arnold K; Luco RF; Oldfield AJ; Ritchie W
    Genome Biol; 2021 Nov; 22(1):307. PubMed ID: 34749764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exitrons: offering new roles to retained introns-the novel regulators of protein diversity and utility.
    Shamnas V M; Singh A; Kumar A; Mishra GP; Sinha SK
    AoB Plants; 2024 Feb; 16(2):plae014. PubMed ID: 38566894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifts in isoform usage underlie transcriptional differences in regulatory T cells in type 1 diabetes.
    Newman JRB; Long SA; Speake C; Greenbaum CJ; Cerosaletti K; Rich SS; Onengut-Gumuscu S; McIntyre LM; Buckner JH; Concannon P
    Commun Biol; 2023 Sep; 6(1):988. PubMed ID: 37758901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retained introns in long RNA-seq reads are not reliably detected in sample-matched short reads.
    David JK; Maden SK; Wood MA; Thompson RF; Nellore A
    Genome Biol; 2022 Nov; 23(1):240. PubMed ID: 36369064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological intron retaining transcripts in the cytoplasm abound during human motor neurogenesis.
    Petrić Howe M; Crerar H; Neeves J; Harley J; Tyzack GE; Klein P; Ramos A; Patani R; Luisier R
    Genome Res; 2022 Oct; 32(10):1808-1825. PubMed ID: 36180233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. m
    Watabe E; Togo-Ohno M; Ishigami Y; Wani S; Hirota K; Kimura-Asami M; Hasan S; Takei S; Fukamizu A; Suzuki Y; Suzuki T; Kuroyanagi H
    EMBO J; 2021 Jul; 40(14):e106434. PubMed ID: 34152017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression.
    Meinke S; Goldammer G; Weber AI; Tarabykin V; Neumann A; Preussner M; Heyd F
    Elife; 2020 Apr; 9():. PubMed ID: 32338600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly ABA-Induced 1 (HAI1)-Interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites.
    Chong GL; Foo MH; Lin WD; Wong MM; Verslues PE
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):22376-22385. PubMed ID: 31611386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico analysis of the sequence features responsible for alternatively spliced introns in the model green alga Chlamydomonas reinhardtii.
    Raj-Kumar PK; Vallon O; Liang C
    Plant Mol Biol; 2017 Jun; 94(3):253-265. PubMed ID: 28364390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ultraconserved Element (UCE) controls homeostatic splicing of ARGLU1 mRNA.
    Pirnie SP; Osman A; Zhu Y; Carmichael GG
    Nucleic Acids Res; 2017 Apr; 45(6):3473-3486. PubMed ID: 27899669
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.