BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11096284)

  • 1. Increased rate of adenine incorporation into adenine nucleotide pool in erythrocytes of patients with chronic renal failure.
    Marlewski M; Smolenski RT; Szolkiewicz M; Aleksandrowicz Z; Rutkowski B; Swierczynski J
    Nephron; 2000 Nov; 86(3):281-6. PubMed ID: 11096284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated degradation of adenine nucleotide in erythrocytes of patients with chronic renal failure.
    Marlewski M; Smolenski RT; Szolkiewicz M; Aleksandrowicz Z; Rutkowski B; Swierczynski J
    Mol Cell Biochem; 2000 Oct; 213(1-2):93-7. PubMed ID: 11129963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High plasma adenine concentration in chronic renal failure and its relation to erythrocyte ATP.
    Slominska EM; Szolkiewicz M; Smolenski RT; Rutkowski B; Swierczynski J
    Nephron; 2002 Jun; 91(2):286-91. PubMed ID: 12053067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Adenine reutilization as a cause of increased ATP concentration in erythrocytes of patients with chronic renal failure].
    Słomińska E; Szołkiewicz M; Rutkowski B; Swierczyński J
    Pol Arch Med Wewn; 2001 Jan; 105(1):45-50. PubMed ID: 11505698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbances of purine nucleotide metabolism in uremia.
    Rutkowski B; Swierczynski J; Slominska E; Szolkiewicz M; Smolenski RT; Marlewski M; Butto B; Rutkowski P
    Semin Nephrol; 2004 Sep; 24(5):479-83. PubMed ID: 15490415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Renal replacement therapy results in correction of plasma and erythrocyte adenine nucleotide abnormalities in patients with chronic renal failure].
    Słominska E; Szolkiewicz M; Rutkowski B; Swierczyński J
    Pol Arch Med Wewn; 2001 Dec; 106(6):1145-51. PubMed ID: 12026534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dipyridamole on adenine incorporation into hypoxanthine nucleotides of fresh red blood cells.
    Kopff M; Zakrzewska I; Klem J; Zachara B
    Biomed Biochim Acta; 1986; 45(7):945-8. PubMed ID: 3790106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis.
    Brandi L
    Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte 2,3-DPG, ATP and oxygen affinity in hemodialysis patients.
    Ninness JR; Kimber RW; McDonald JW
    Can Med Assoc J; 1974 Oct; 111(7):661-5. PubMed ID: 4413276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of loss of adenine nucleotides from mitochondria during myocardial ischemia.
    Sandhu GS; Asimakis GK
    J Mol Cell Cardiol; 1991 Dec; 23(12):1423-35. PubMed ID: 1811058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of adenosine and adenine into hypoxanthine nucleotides of fresh red blood cells.
    Kopff M
    Blut; 1986 Oct; 53(4):347-50. PubMed ID: 3756359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
    Smolenski RT; Kalsi KK; Zych M; Kochan Z; Yacoub MH
    J Mol Cell Cardiol; 1998 Mar; 30(3):673-83. PubMed ID: 9515042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of glucose in dialyzing fluid on purine concentrations in hemodialyzed patients with chronic renal failure.
    Bober J; Kedzierska K; Safranow K; Kwiatkowska E; Jakubowska K; Herdzik E; Dołegowska B; Domański L; Ciechanowski K
    Nephron Clin Pract; 2003; 95(1):c31-6. PubMed ID: 14520019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some aspects of adenosine triphosphate synthesis from adenine and adenosine in human red blood cells.
    Whittam R; Wiley JS
    J Physiol; 1968 Dec; 199(2):485-94. PubMed ID: 5723519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Adenine nucleotide- and 2,3-diphosphoglycerate metabolism in human erythrocytes in chronic kidney insufficiency].
    Mücke D; Strauss D; Eschke P; Gross J; Grossmann P; Daniel A
    Z Urol Nephrol; 1977 Jan; 70(1):39-49. PubMed ID: 848144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated purine base salvage--a possible cause of elevated nucleotide pool in the erythrocytes of patients with uraemia.
    Marlewski M; Smolenski RT; Swierczynski J; Rutkowski B; Duley JA; Simmonds HA; Zydowo MM
    Adv Exp Med Biol; 1994; 370():19-22. PubMed ID: 7660888
    [No Abstract]   [Full Text] [Related]  

  • 17. Distribution of purine nucleotides in uremic fluids and tissues.
    Rutkowski B; Rutkowski P; Słomińska E; Swierczyński J
    J Ren Nutr; 2010 Sep; 20(5 Suppl):S7-10. PubMed ID: 20797575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevation of the adenylate pool in rat cardiomyocytes by S-adenosyl-L-methionine.
    Smolenski RT
    Acta Biochim Pol; 2000; 47(4):1171-8. PubMed ID: 11996106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine metabolism of human erythrocytes during storage and physiological conditions.
    de Verdier CH; Ericson A; Niklasson F; Groth T
    Acta Biol Med Ger; 1981; 40(4-5):677-82. PubMed ID: 7315114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purine metabolism of erythrocytes in myotonic dystrophy.
    Müller MM; Kuzmits R; Frass M; Mamoli B
    J Neurol; 1980; 223(1):59-66. PubMed ID: 6155454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.