These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 11097886)
1. Role of proteolysis in determining potency of Bacillus thuringiensis Cry1Ac delta-endotoxin. Lightwood DJ; Ellar DJ; Jarrett P Appl Environ Microbiol; 2000 Dec; 66(12):5174-81. PubMed ID: 11097886 [TBL] [Abstract][Full Text] [Related]
2. Role of Bacillus thuringiensis Cry1 delta endotoxin binding in determining potency during lepidopteran larval development. Gilliland A; Chambers CE; Bone EJ; Ellar DJ Appl Environ Microbiol; 2002 Apr; 68(4):1509-15. PubMed ID: 11916662 [TBL] [Abstract][Full Text] [Related]
3. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Hofmann C; Vanderbruggen H; Höfte H; Van Rie J; Jansens S; Van Mellaert H Proc Natl Acad Sci U S A; 1988 Nov; 85(21):7844-8. PubMed ID: 2856194 [TBL] [Abstract][Full Text] [Related]
4. Pesticidal and receptor binding properties of Bacillus thuringiensis Cry1Ab and Cry1Ac delta-endotoxin mutants to Pectinophora gossypiella and Helicoverpa zea. Karim S; Dean DH Curr Microbiol; 2000 Dec; 41(6):430-40. PubMed ID: 11080394 [TBL] [Abstract][Full Text] [Related]
5. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2003 Oct; 69(10):5898-906. PubMed ID: 14532042 [TBL] [Abstract][Full Text] [Related]
6. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Haider MZ; Knowles BH; Ellar DJ Eur J Biochem; 1986 May; 156(3):531-40. PubMed ID: 3009187 [TBL] [Abstract][Full Text] [Related]
7. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Fang S; Wang L; Guo W; Zhang X; Peng D; Luo C; Yu Z; Sun M Appl Environ Microbiol; 2009 Aug; 75(16):5237-43. PubMed ID: 19542344 [TBL] [Abstract][Full Text] [Related]
8. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
9. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
10. Mutagenic analysis of a conserved region of domain III in the Cry1Ac toxin of Bacillus thuringiensis. Masson L; Tabashnik BE; Mazza A; Préfontaine G; Potvin L; Brousseau R; Schwartz JL Appl Environ Microbiol; 2002 Jan; 68(1):194-200. PubMed ID: 11772627 [TBL] [Abstract][Full Text] [Related]
12. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Bacillus thuringiensis strain DOR4 toxic to castor semilooper Achaea janata: proteolytic processing and binding of toxins to receptors. Budatha M; Meur G; Vimala Devi PS; Kirti PB; Dutta-Gupta A Curr Microbiol; 2008 Jul; 57(1):72-7. PubMed ID: 18437459 [TBL] [Abstract][Full Text] [Related]
14. Altered binding of the Cry1Ac toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates. Mohammed SI; Johnson DE; Aronson AI Appl Environ Microbiol; 1996 Nov; 62(11):4168-73. PubMed ID: 8900008 [TBL] [Abstract][Full Text] [Related]
15. N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin. Bravo A; Sanchez J; Kouskoura T; Crickmore N J Biol Chem; 2002 Jul; 277(27):23985-7. PubMed ID: 12019259 [TBL] [Abstract][Full Text] [Related]
16. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. Rajamohan F; Alcantara E; Lee MK; Chen XJ; Curtiss A; Dean DH J Bacteriol; 1995 May; 177(9):2276-82. PubMed ID: 7730254 [TBL] [Abstract][Full Text] [Related]
17. Mutations at domain II, loop 3, of Bacillus thuringiensis CryIAa and CryIAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts. Rajamohan F; Hussain SR; Cotrill JA; Gould F; Dean DH J Biol Chem; 1996 Oct; 271(41):25220-6. PubMed ID: 8810282 [TBL] [Abstract][Full Text] [Related]
18. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Hofmann C; Lüthy P; Hütter R; Pliska V Eur J Biochem; 1988 Apr; 173(1):85-91. PubMed ID: 2833394 [TBL] [Abstract][Full Text] [Related]
19. Role of two arginine residues in domain II, loop 2 of Cry1Ab and Cry1Ac Bacillus thuringiensis delta-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N. Lee MK; Rajamohan F; Jenkins JL; Curtiss AS; Dean DH Mol Microbiol; 2000 Oct; 38(2):289-98. PubMed ID: 11069655 [TBL] [Abstract][Full Text] [Related]
20. Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Smedley DP; Ellar DJ Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1617-24. PubMed ID: 8757726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]