These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 11097893)

  • 21. A cryptic proline permease in Salmonella typhimurium.
    Liao MK; Gort S; Maloy S
    Microbiology (Reading); 1997 Sep; 143 ( Pt 9)():2903-2911. PubMed ID: 9308174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic and physical characterization of putP, the proline carrier gene of Escherichia coli K12.
    Mogi T; Yamamoto H; Nakao T; Yamato I; Anraku Y
    Mol Gen Genet; 1986 Jan; 202(1):35-41. PubMed ID: 3007935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular characterization of Pseudomonas putida KT2440 rpoH gene regulation.
    Manzanera M; Aranda-Olmedo I; Ramos JL; Marqués S
    Microbiology (Reading); 2001 May; 147(Pt 5):1323-1330. PubMed ID: 11320135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleotide sequence of putC, the regulatory region for the put regulon of Escherichia coli K12.
    Nakao T; Yamato I; Anraku Y
    Mol Gen Genet; 1987 Dec; 210(2):364-8. PubMed ID: 3325781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum.
    Straub PF; Reynolds PH; Althomsons S; Mett V; Zhu Y; Shearer G; Kohl DH
    Appl Environ Microbiol; 1996 Jan; 62(1):221-9. PubMed ID: 8572700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3.
    O' Leary ND; O' Mahony MM; Dobson AD
    BMC Microbiol; 2011 Oct; 11():229. PubMed ID: 21995721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The sigma-factor FliA, ppGpp and DksA coordinate transcriptional control of the aer2 gene of Pseudomonas putida.
    Osterberg S; Skärfstad E; Shingler V
    Environ Microbiol; 2010 Jun; 12(6):1439-51. PubMed ID: 20089044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo and in vitro evidence that TtgV is the specific regulator of the TtgGHI multidrug and solvent efflux pump of Pseudomonas putida.
    Rojas A; Segura A; Guazzaroni ME; Terán W; Hurtado A; Gallegos MT; Ramos JL
    J Bacteriol; 2003 Aug; 185(16):4755-63. PubMed ID: 12896994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two proline porters in Escherichia coli K-12.
    Stalmach ME; Grothe S; Wood JM
    J Bacteriol; 1983 Nov; 156(2):481-6. PubMed ID: 6355059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida.
    Hervás AB; Canosa I; Little R; Dixon R; Santero E
    J Bacteriol; 2009 Oct; 191(19):6123-35. PubMed ID: 19648236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme.
    Gu D; Zhou Y; Kallhoff V; Baban B; Tanner JJ; Becker DF
    J Biol Chem; 2004 Jul; 279(30):31171-6. PubMed ID: 15155740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor.
    Phoenix P; Keane A; Patel A; Bergeron H; Ghoshal S; Lau PC
    Environ Microbiol; 2003 Dec; 5(12):1309-27. PubMed ID: 14641576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression and regulation of a dnaA homologue isolated from Pseudomonas putida.
    Ingmer H; Atlung T
    Mol Gen Genet; 1992 Apr; 232(3):431-9. PubMed ID: 1588913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NsiR3, a nitrogen stress-inducible small RNA, regulates proline oxidase expression in the cyanobacterium Nostoc sp. PCC 7120.
    Álvarez-Escribano I; Brenes-Álvarez M; Olmedo-Verd E; Georg J; Hess WR; Vioque A; Muro-Pastor AM
    FEBS J; 2021 Mar; 288(5):1614-1629. PubMed ID: 32799414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel.
    Surber MW; Maloy S
    Arch Biochem Biophys; 1998 Jun; 354(2):281-7. PubMed ID: 9637737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proline utilization by Bacillus subtilis: uptake and catabolism.
    Moses S; Sinner T; Zaprasis A; Stöveken N; Hoffmann T; Belitsky BR; Sonenshein AL; Bremer E
    J Bacteriol; 2012 Feb; 194(4):745-58. PubMed ID: 22139509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudomonas aeruginosa promoters which contain a conserved GG-N10-GC motif but appear to be RpoN-independent.
    Savioz A; Zimmermann A; Haas D
    Mol Gen Genet; 1993 Apr; 238(1-2):74-80. PubMed ID: 8479442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the rpoD gene encoding the principal sigma factor of Pseudomonas putida.
    Fujita M; Hanaura Y; Amemura A
    Gene; 1995 Dec; 167(1-2):93-8. PubMed ID: 8566819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catabolism of phenylalanine by Pseudomonas putida: the NtrC-family PhhR regulator binds to two sites upstream from the phhA gene and stimulates transcription with sigma70.
    Herrera MC; Ramos JL
    J Mol Biol; 2007 Mar; 366(5):1374-86. PubMed ID: 17217960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.