BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 11097909)

  • 1. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.
    van Beek S; Priest FG
    Appl Environ Microbiol; 2000 Dec; 66(12):5322-8. PubMed ID: 11097909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of phenolic acids in whole wheat and rye malt sourdoughs.
    Ripari V; Bai Y; Gänzle MG
    Food Microbiol; 2019 Feb; 77():43-51. PubMed ID: 30297055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of lactobacilli from Scotch malt whisky distilleries and description of Lactobacillus ferintoshensis sp. nov., a new species isolated from malt whisky fermentations.
    Simpson KL; Pettersson B; Priest FG
    Microbiology (Reading); 2001 Apr; 147(Pt 4):1007-1016. PubMed ID: 11283296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the lactic acid bacterial community during malt whisky fermentation: a polyphasic study.
    van Beek S; Priest FG
    Appl Environ Microbiol; 2002 Jan; 68(1):297-305. PubMed ID: 11772639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.
    Silva I; Campos FM; Hogg T; Couto JA
    J Appl Microbiol; 2011 Aug; 111(2):360-70. PubMed ID: 21575111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.
    Mukai N; Masaki K; Fujii T; Iefuji H
    J Biosci Bioeng; 2014 Jul; 118(1):50-5. PubMed ID: 24507903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae.
    Mukai N; Masaki K; Fujii T; Kawamukai M; Iefuji H
    J Biosci Bioeng; 2010 Jun; 109(6):564-9. PubMed ID: 20471595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Determinants of Hydroxycinnamic Acid Metabolism in Heterofermentative Lactobacilli.
    Gaur G; Oh JH; Filannino P; Gobbetti M; van Pijkeren JP; Gänzle MG
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of genes involved in metabolism of phenolic compounds by Lactobacillus pentosus and its relevance for table-olive fermentations.
    Carrasco JA; Lucena-Padrós H; Brenes M; Ruiz-Barba JL
    Food Microbiol; 2018 Dec; 76():382-389. PubMed ID: 30166164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.
    Hu H; Li L; Ding S
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5071-81. PubMed ID: 25547838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review.
    Lomascolo A; Odinot E; Villeneuve P; Lecomte J
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):173. PubMed ID: 37964324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-fermentation of malt whisky wort using Lactobacillus plantarum and its influence on new-make spirit character.
    Reid SJ; Speers RA; Willoughby N; Lumsden WB; Maskell DL
    Food Chem; 2020 Aug; 320():126605. PubMed ID: 32229395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decarboxylation of sorbic acid by spoilage yeasts is associated with the PAD1 gene.
    Stratford M; Plumridge A; Archer DB
    Appl Environ Microbiol; 2007 Oct; 73(20):6534-42. PubMed ID: 17766451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T).
    Rodríguez H; Landete JM; Curiel JA; de Las Rivas B; Mancheño JM; Muñoz R
    J Agric Food Chem; 2008 May; 56(9):3068-72. PubMed ID: 18416556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae.
    Smit A; Cordero Otero RR; Lambrechts MG; Pretorius IS; Van Rensburg P
    J Agric Food Chem; 2003 Aug; 51(17):4909-15. PubMed ID: 12903944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.
    Langos D; Granvogl M
    J Agric Food Chem; 2016 Mar; 64(11):2325-32. PubMed ID: 26800353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 4-ethylphenol from 4-hydroxycinnamic acid by Lactobacillus sp. isolated from a swine waste lagoon.
    Kridelbaugh D; Hughes S; Allen T; Doerner KC
    J Appl Microbiol; 2010 Jul; 109(1):190-8. PubMed ID: 20028439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.
    Coghe S; Benoot K; Delvaux F; Vanderhaegen B; Delvaux FR
    J Agric Food Chem; 2004 Feb; 52(3):602-8. PubMed ID: 14759156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols.
    Santamaría L; Reverón I; de Felipe FL; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29934329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the Reduction Pathway as an Alternative Metabolic Route to Hydroxycinnamate Decarboxylation in Lactobacillus plantarum.
    Santamaría L; Reverón I; López de Felipe F; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776925
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.